Determining the technical and economic parameters for designing hybrid power units for the budget segment

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.194642

Keywords:

hybrid vehicle, hybrid power unit, traction rechargeable battery, energy intensity

Abstract

The paper addresses the issue of designing environmentally friendly and energy-efficient vehicles in a budget segment based on determining the technical-economic parameters. The fuel efficiency and environmental friendliness of cars have been improved and substantiated through devising a hybrid power system based on the chosen rational technical-economic parameters. We have constructed three-dimensional dependences of energy, consumed by the unit of traction rechargeable batteries, and a relative travel range, on the mass and steady speed. Recommendations have been made on selecting the energy intensity of the unit of traction rechargeable batteries for hybrid vehicles of different mass and the desired travel range under an electricity-only mode. We have established the travel range under an electricity-only mode per a single charge of traction rechargeable batteries within 20 km to 50 km. The choice of a hybrid vehicle has been proposed depending on the expected average daily mileage and the energy intensity of traction rechargeable batteries. This would make it possible for a consumer to make a decision about the choice of a hybrid vehicle based on the individual planned average daily mileage.

Conceptual solutions have been developed to construct hybrid power units based on the economic principle of their design. The scientific results have been confirmed in practice using an experimental hybrid concept based on the ZAZ Lanos Pickup. Such an approach makes hybrid vehicles more competitive and economically attractive

Author Biographies

Oleh Smyrnov, Kharkiv National Automobile and Highway University Yaroslava Mudroho str., 25, Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Professor

Department of Vehicle Electronics

Anna Borysenko, Kharkiv National Automobile and Highway University Yaroslava Mudroho str., 25, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of Vehicle Electronics

Irina Trynova, Kharkiv National Automobile and Highway University Yaroslava Mudroho str., 25, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of Vehicle Electronics

Iaroslava Levchenko, Kharkiv National Automobile and Highway University Yaroslava Mudroho str., 25, Kharkiv, Ukraine, 61002

Doctor of Social Sciences and Economics, Associate Professor

Department of Economics and Entrepreneurship

Anton Marchenko, Kharkiv National Automobile and Highway University Yaroslava Mudroho str., 25, Kharkiv, Ukraine, 61002

Рostgraduate Student

Department of Vehicle Electronics

References

  1. Future US Trends in the Adoption of Light-Duty Automotive Technologies. Washington, 152. Available at: http://www.api.org/~/media/files/policy/fuels-and-renewables/hds-092013-future-us-trends-in-adoption-of-ld-auto-technologies.pdf
  2. Assessment of the implementation of a European alternative fuels strategy and possible supportive proposals. Available at: http://ec.europa.eu/transport/themes/urban/studies/doc/2012-08-cts-implementation-study.pdf
  3. Electric Vehicle Outlook. Available at: https://about.bnef.com/electric-vehicle-outlook
  4. Fuhs, A. (2008)., Hybrid vehicles and the future of personal transportation. CRC Press. doi: https://doi.org/10.1201/9781420075359
  5. Lie, T. T., Prasad, K., Ding, N. (2017). The electric vehicle: a review. International Journal of Electric and Hybrid Vehicles, 9 (1), 49. doi: https://doi.org/10.1504/ijehv.2017.10003709
  6. Statystychnyi shchorichnyk Ukrainy za 2017 rik. Derzhavnyi komitet statystyky Ukrainy. Available at: https://ukrstat.org/uk/druk/publicat/kat_u/publ1_u.htm
  7. Chen, Q., Liao, C., Ouyang, A., Li, X., Xiao, Q. (2016). Research and development of in-wheel motor driving technology for electric vehicles. International Journal of Electric and Hybrid Vehicles, 8 (3), 242. doi: https://doi.org/10.1504/ijehv.2016.080024
  8. Mirovoy Atlas Dannyh. Available at: https://knoema.ru/atlas
  9. Foust, T., Jones, R., Graves, E., McCoskey, J., Yoon, H. S. (2016). Effect of an electric vehicle mode in a plug-in hybrid electric vehicle with a post-transmission electric motor. International Journal of Electric and Hybrid Vehicles, 8 (4), 302. doi: https://doi.org/10.1504/ijehv.2016.080728
  10. Vinot, E. (2016). Comparison of different power-split hybrid architectures using a global optimisation design method. International Journal of Electric and Hybrid Vehicles, 8 (3), 225. doi: https://doi.org/10.1504/ijehv.2016.10000953
  11. Borysenko, A. O., Korzhov, A. H. (2018). Rozrakhunok ekvivalentnoi vytraty palyva elektromobiliamy. Naukovi pratsi VI Mizhnarodnoi naukovo-tekhnichnoi Internet-konferentsiyi «Avtomobil i elektronika. Suchasni tekhnolohiyi». Kharkiv, 71–72.
  12. Smyrnov, O., Klymenko, S. (2015). Principles of construction hybrid power installations. Avtomobil' i elektronika. Sovremennye tehnologii: elektronnoe nauchnoe spetsializirovannoe izdanie, 8, 27–30.
  13. Prius. Available at: https://www.toyota.com/prius/
  14. Volt Models & Specs 2019. Available at: http://www.chevrolet.com/
  15. Puškár, M., Kopas, M., Kádárová, J. (2017). Ecological analysis related to creation of gaseous emissions within transport focused on fulfilment of the future emission standards. Transportation Research Part D: Transport and Environment, 57, 413–421. doi: https://doi.org/10.1016/j.trd.2017.10.007
  16. Mitropoulos, L. K., Prevedouros, P. D., Kopelias, P. (2017). Total cost of ownership and externalities of conventional, hybrid and electric vehicle. Transportation Research Procedia, 24, 267–274. doi: https://doi.org/10.1016/j.trpro.2017.05.117
  17. Pavlović, T., Mirjanić, D., Mitić, I. R., Stanković, A. M. (2019). The Impact of Electric Cars Use on the Environment. Lecture Notes in Networks and Systems, 541–548. doi: https://doi.org/10.1007/978-3-030-18072-0_62
  18. Benajes, J., García, A., Monsalve-Serrano, J., Martínez-Boggio, S. (2020). Emissions reduction from passenger cars with RCCI plug-in hybrid electric vehicle technology. Applied Thermal Engineering, 164, 114430. doi: https://doi.org/10.1016/j.applthermaleng.2019.114430
  19. Smirnov, O. P., Borisenko, A. O. (2017). Modeling of energy costs hybrid vehicles depending on operating conditions. Avtomobil i elektronika. Suchasni tekhnolohiyi, 11, 20–23.
  20. Bazhynova, T. O., Borysenko, A. O. (2016). Ekspluatatsiini vlastyvosti hibrydnykh avtomobiliv. Kharkiv: StylYzdat, 104.
  21. Smirnov, О., Borisenko, A. (2016). Improving the reliability of hybrid power plants. Avtomobil i elektronika. Suchasni tekhnolohiyi, 9, 32–36.
  22. Bazhynov, O. V., Smyrnov, O. P., Sierikov, S. A., Hnatov, A. V., Koliesnikov, A. V. (2008). Hibrydni avtomobili. Kharkiv: KhNADU, 327.
  23. Smyrnov, O., Klymenko, S. (2014). Experimental research of power characteristics car Toyota Prius in the mode electromobile. Avtomobil i elektronika. Suchasni tekhnolohiyi, 6, 94–96.

Downloads

Published

2020-02-29

How to Cite

Smyrnov, O., Borysenko, A., Trynova, I., Levchenko, I., & Marchenko, A. (2020). Determining the technical and economic parameters for designing hybrid power units for the budget segment. Eastern-European Journal of Enterprise Technologies, 1(8 (103), 43–49. https://doi.org/10.15587/1729-4061.2020.194642

Issue

Section

Energy-saving technologies and equipment