Devising and introducing a procedure for measuring a dynamic stabilization error in weapon stabilizers

Authors

  • Olena Bezvesilna National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” Peremohy blvd., 37, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0002-6951-1242
  • Оleksii Petrenko Pablic Joint Stock Company «Research-and-Production association «Kyiv avtomatics plant» Starokyivska str., 10, Kyiv, Ukraine, 03116, Ukraine https://orcid.org/0000-0003-0435-0211
  • Viacheslav Halytskyi National Aviation University Kosmonavta Komarova ave., 1, Kyiv, Ukraine, 03058 Pablic Joint Stock Company «Research-and-Production association «Kyiv avtomatics plant» Starokyivska str., 10, Kyiv, Ukraine, 03116, Ukraine https://orcid.org/0000-0001-9310-1529
  • Mukola Ilchenko Pablic Joint Stock Company «Research-and-Production association «Kyiv avtomatics plant» Starokyivska str., 10, Kyiv, Ukraine, 03116, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2020.196086

Keywords:

stabilizer, gyro tachometer, vibration gyroscope, median stabilization error, dynamic stabilization error

Abstract

This paper reports variants for checking the median error of the 2Е36 weapon stabilizer under conditions of a standard path by means of video recording with a film camera followed by film processing and performing all operations in a manual mode. A procedure of measuring the median error of the SVU-500 weapon digital stabilizer has been given. To ensure the possibility of determining the errors of stabilization in each set of stabilizers, the enterprise-manufacturer has devised and implemented for the customer's main product, without using a standard path, a new procedure for measuring a dynamic stabilization error. This work involved methods of mathematical modeling, which has made it possible to determine the point of sending a sinusoidal signal to the control circuit of the stabilizer. The experimental confirmation of the results obtained during modeling involved the test of a stabilizer kit at the technological bench and at the actual training turret, which made it possible to refine the parameters of the sinusoidal signal. To conduct such tests, special algorithmic software was developed, which was installed, in addition to the main program at the time of testing, in the stabilizer control unit. Subsequent tests confirmed correctness of results obtained during mathematical modeling, which made it possible to introduce verification of one of the main parameters of stabilization of dynamic error to the acceptance tests of each stabilizer kit

Author Biographies

Olena Bezvesilna, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” Peremohy blvd., 37, Kyiv, Ukraine, 03056

Doctor of Technical Sciences, Professor, Honored Worker of Science and Technology of Ukraine

Department of Instrument-Making

Оleksii Petrenko, Pablic Joint Stock Company «Research-and-Production association «Kyiv avtomatics plant» Starokyivska str., 10, Kyiv, Ukraine, 03116

Head of Bureau

Special Design Bureau

Viacheslav Halytskyi, National Aviation University Kosmonavta Komarova ave., 1, Kyiv, Ukraine, 03058 Pablic Joint Stock Company «Research-and-Production association «Kyiv avtomatics plant» Starokyivska str., 10, Kyiv, Ukraine, 03116

Postgraduate Student

Department of Computerized Electrical Systems and Technologies

Head of Department

Mukola Ilchenko, Pablic Joint Stock Company «Research-and-Production association «Kyiv avtomatics plant» Starokyivska str., 10, Kyiv, Ukraine, 03116

Lead Design Engineer

Special Design Bureau

References

  1. Boevaya mashina pehoty BMP-2. Tehnicheskoe opisanie i instruktsiya po ekspluatatsii. Chast' 1 (1988). Moscow: Voennoe izdatel'stvo, 250.
  2. Kudryavtsev, A. M., Ulasevich, O. K., Zheglov, V. N., Gumilev, V. Yu. (2013). Stabilizatory vooruzheniya 2E36: ustroystvo i obsluzhivanie. Ryazan', 145. Available at: http://portalnp.ru/wp-content/uploads/2014/04/KUDRYAVTSEV-GUMELEV-SV-2E36.pdf
  3. Stabilizator 2E26M. Tehnicheskoe opisanie i instruktsiya po ekspluatatsii. Al'bom risunkov (1985). Moscow: Voenizdat, 84.
  4. BMP-3. Tehnicheskoe opisanie boevoy mashiny pehoty (1988). Moscow: Voenizdat, 55. Available at: https://eknigi.org/voennaja_istorija/181170-bmp-3-tehnicheskoe-opisanie-boevoy-mashiny-pehoty.html
  5. Berezin, S. M., Kononchuk, V. P., Lun'kov, A. P., Nikonov, A. I. (1991). Kompleks vooruzheniya BMP-3. Vestnik bronetankovoy tehniki, 5.
  6. Stepanchenko, I. V., Sal'nikov, S. S., Matveev, I. A., Bogdanova, L. A., Vlasov, E. V., Shiryaev, G. S., Popov, V. V. (2009). Pat. No. RU2360208C2. Kompleks vooruzheniya boevoy mashiny i stabilizator vooruzheniya. No. 2007124064/02; declareted: 10.01.2009; published: 27.06.2009, Bul. No. 18. Available at: https://patentimages.storage.googleapis.com/50/95/ed/33b95b367d15c7/RU2360208C2.pdf
  7. Lepeshinskiy, I. Yu., Varlakov, P. M., Zaharov, D. N., Chikirev, O. I. (2010). Avtomaticheskie sistemy upravleniya vooruzheniem. Omsk, 200.
  8. Bezvesilna, O. M., Tsiruk, V. H., Kvasnikov, V. P., Chepiuk, L. O. (2014). Analiz zakordonnykh system navedennia ta stabilizatsiyi. Bulletin of Engineering Academy of Ukraine, 2, 155–159.
  9. Besekerskiy, V. A., Popov, E. P. (2003). Teoriya sistem avtomaticheskogo upravleniya. Sankt-Peterburg, 752.
  10. Ornatskiy, P. P. (1983). Teoreticheskie osnovy informatsionno-izmeritel'noy tehniki. Kyiv, 455.
  11. Simulation and Model-Based Design. Available at: https://www.mathworks.com/products/simulink.html
  12. Vasil'ev, V. V., Simak, L. A., Rybnikova, A. M. (2008). Matematicheskoe i komp'yuternoe modelirovanie protsessov i sistem v srede MATLAB/SIMULINK. Kyiv: Natsional'niy aviatsionnyy universitet, 91.
  13. Liu, J., Shen, Q., Qin, W. (2015). Signal Processing Technique for Combining Numerous MEMS Gyroscopes Based on Dynamic Conditional Correlation. Micromachines, 6 (6), 684–698. doi: https://doi.org/10.3390/mi6060684
  14. Ting, T. O., Man, K. L., Lei, C.-U., Lu, C. (2014). State-of-Charge for Battery Management System via Kalman Filter. Engineering Letters, 22 (2), 75–82.
  15. Ji, X. (2015). Research on Signal Processing of MEMS Gyro Array. Mathematical Problems in Engineering, 2015, 1–6. doi: https://doi.org/10.1155/2015/120954
  16. IEEE Standard Specification Format Guide and Test Procedure for Coriolis Vibratory Gyros (2004). doi: https://doi.org/10.1109/ieeestd.2004.95744

Downloads

Published

2020-02-29

How to Cite

Bezvesilna, O., Petrenko О., Halytskyi, V., & Ilchenko, M. (2020). Devising and introducing a procedure for measuring a dynamic stabilization error in weapon stabilizers. Eastern-European Journal of Enterprise Technologies, 1(9 (103), 39–45. https://doi.org/10.15587/1729-4061.2020.196086

Issue

Section

Information and controlling system