Harnessing the technological potential of chia seeds in the technology of cream-whipped candy masses

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.199923

Keywords:

chia seeds, functional and technological properties, cream-whipped candy masses, quality indicators, confectionery

Abstract

The technological properties of chia seeds have been studied. It has been established that the degree of their swelling depends on the type of a medium (water, albumin solution, fat) and the state of seeds (whole seeds or ground seeds). It was noted that the whole seeds have a higher capacity to retain water than the ability to retain an albumin solution or fat, by 1.87 and 17.28 times, and the ground seeds – by 1.75 and 17.49 times, respectively. Their capacity to swell improves after grinding regardless of the type of a medium. In addition, the ground seeds have a better fat-emulsifying ability but they do not demonstrate the foaming properties. The whole chia seeds have good foaming properties. It is possible to obtain a whipped protein mass, which is not worse than the control sample in terms of stability and foaming capacity, in case of replacing 40 % of dry albumin with whole chia seeds.

We recommend adding the whole chia seeds at the stage of the whipping of protein mass, and the ground seeds – at the stage of obtaining a fat emulsion semi-finished product in the production of cream-whipped candy masses. Thus, the formulation amount of dry albumin and fat decreases. The addition of 30 % of whole seeds and 30 % of ground seeds helps reduce the density of structured cream-whipped candy mass by 6.7 %. A further increase in the dosage of the additive leads to a slight increase in the value of the density indicator. In addition, an increase in the content of chia seeds causes an increase in the strength indicator of samples. The organoleptic analysis showed that the structured cream-whipped candy masses with the most studied dosage of chia seeds have the densified structure, uneven porosity, and strong, viscous consistency. It was found that the dosage of whole seeds should equal 40 % by weight of egg albumin, and the dosage of ground seeds – 40 % by weight of fat to ensure the high quality of cream-whipped candy masses.

The obtained results are of practical importance for improving the technology of cream-whipped candy masses towards decreasing the formulation amount of albumin and margarine. The addition of chia seeds would improve the nutritional and biological values of cream-whipped candies

Author Biographies

Olena Shydakova-Kameniuka, Kharkiv State University of Food Technology and Trade Klochkivska str., 333, Kharkiv, Ukraine, 61051

PhD, Associate Professor

Department of Bakery, Confectionary, Pasta and Food Concentrates Technology

Oleksii Shkliaiev, Superlakomka LLC Kashtanova str., 29, Kharkiv, Ukraine, 61124

Head Technologist

Olga Samokhvalova, Kharkiv State University of Food Technology and Trade Klochkivska str., 333, Kharkiv, Ukraine, 61051

PhD, Professor

Department of Bakery, Confectionary, Pasta and Food Concentrates Technology

Maya Artamonova, Kharkiv State University of Food Technology and Trade Klochkivska str., 333, Kharkiv, Ukraine, 61051

PhD, Associate Professor

Department of Bakery, Confectionary, Pasta and Food Concentrates Technology

Galyna Stepankova, Kharkiv Petro Vasylenko National Technical University of Agriculture Alchevskykh str., 44, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of Processing and Food Production Technologies

Olena Bolkhovitina, Kharkiv State University of Food Technology and Trade Klochkivska str., 333, Kharkiv, Ukraine, 61051

PhD, Associate Professor

Department of Bakery, Confectionary, Pasta and Food Concentrates Technology

Alla Rogova, Poltava University of Economics and Trade Kovalia str., 3, Poltava, Ukraine, 36014

PhD, Associate Professor

Department of Food Industry Technologies and Restaurant Industry

References

  1. Ryzhakova, A. V., Babina, O. A. (2017). The global confectionery market. Mezhdunarodnaya torgovlya i torgovaya politika, 4, 59–74.
  2. Novyi etap solodkoho zhyttia: analiz rynku shokoladnykh kondyterskykh vyrobiv v Ukraini. Available at: https://pro-consulting.ua/ua/pressroom/novyj-etap-sladkoj-zhizni-analiz-rynka-shokoladnyh-konditerskih-izdelij-v-ukraine
  3. Bigliardi, B., Galati, F. (2013). Innovation trends in the food industry: The case of functional foods. Trends in Food Science & Technology, 31 (2), 118–129. doi: https://doi.org/10.1016/j.tifs.2013.03.006
  4. Tkeshelashvili, M. E., Bobozhonova, G. A., Magomedov, G. O., Magomedov, M. G. (2018). Improving the technology of whipped sweets using high whip egg white powder. Proceedings of the Voronezh State University of Engineering Technologies, 80 (2), 158–164. doi: https://doi.org/10.20914/2310-1202-2018-2-158-164
  5. Królczyk, J., Dawidziuk, T., Janiszewska-Turak, E., Sołowiej, B. (2016). Use of Whey and Whey Preparations in the Food Industry – a Review. Polish Journal of Food and Nutrition Sciences, 66 (3), 157–165. doi: https://doi.org/10.1515/pjfns-2015-0052
  6. Kalinovskaya, T., Obolkina, V. (2014). Using combined proteins and hydrocolloids for creating aerated candy masses. Eastern-European Journal of Enterprise Technologies, 2 (12 (68)), 113–121. doi: https://doi.org/10.15587/1729-4061.2014.22862
  7. Kambulova, Y., Zvyagintseva-Semenets, Y., Kobylinskaya, E., Korzun, V., Sokolovskaya, I (2019). Microstructure of creams made from whipped cream with polysaccharides and various species of sugars. Food Science and Technology, 13 (3), 36–45. doi: https://doi.org/10.15673/fst.v13i3.1471
  8. Skobel'skaya, Z. G., Dragilev, A. I., Kondakova, I. A., Poterya, A. I., Leont'eva, M. A. (1998). Nauchnoe obosnovanie tehnologii kremovo-sbivnyh mass na novom zhire. Pishchevaya promyshlennost', 10, 14–15.
  9. Obolkina, V., Kyianytsia, S. (2008). Scientific approach the development of rational technology of candies with the combined corps which are formed by the method of co-extrusion. Natsionalnyi universytet kharchovykh tekhnolohiy. Naukovi pratsi, 25 (1), 78–81. Available at: http://dspace.nuft.edu.ua/jspui/handle/123456789/378
  10. Mardani, M., Yeganehzad, S., Ptichkina, N., Kodatsky, Y., Kliukina, O., Nepovinnykh, N., Naji-Tabasi, S. (2019). Study on foaming, rheological and thermal properties of gelatin-free marshmallow. Food Hydrocolloids, 93, 335–341. doi: https://doi.org/10.1016/j.foodhyd.2019.02.033
  11. Oliinyk, S., Samokhvalova, O., Lapitska, N., Kucheruk, Z. (2020). Studying the influence of meats from wheat and oat germs, and rose hips, on the formation of quality of rye­w heat dough and bread. Eastern-European Journal of Enterprise Technologies, 1 (11 (103)), 59–65. doi: https://doi.org/10.15587/1729-4061.2020.187944
  12. Gorodyska, O., Grevtseva, N., Samokhvalova, O., Gubsky, S., Gavrish, T., Denisenko, S., Grigorenko, A. (2018). Influence of grape seeds powder on preservation of fats in confectionary glaze. Eastern-European Journal of Enterprise Technologies, 6 (11 (96)), 36–43. doi: https://doi.org/10.15587/1729-4061.2018.147760
  13. Shydakova-Kameniuka, E., Novik, A., Zhukov, Y., Matsuk, Y., Zaparenko, A., Babich, P., Oliinyk, S. (2019). Estimation of technological properties of nut meals and their effect on the quality of emulsion for butter biscuits with liquid oils. Eastern-European Journal of Enterprise Technologies, 2 (11 (98)), 56–64. doi: https://doi.org/10.15587/1729-4061.2019.159983
  14. Zagorulko, A., Zahorulko, A., Kasabova, K., Chervonyi, V., Omelchenko, O., Sabadash, S. et. al. (2018). Universal multifunctional device for heat and mass exchange processes during organic raw material processing. Eastern-European Journal of Enterprise Technologies, 6(1 (96)), 47–54. doi: https://doi.org/10.15587/1729-4061.2018.148443
  15. Cherevko, O., Mykhaylov, V., Zagorulko, A., Zahorulko, A. (2018). Improvement of a rotor film device for the production of high­quality multicomponent natural pastes. Eastern-European Journal of Enterprise Technologies, 2 (11 (92)), 11–17. doi: https://doi.org/10.15587/1729-4061.2018.126400
  16. Ianchyk, M., Niemirich, O., Gavrysh, A. (2016). Study of functional and technological properties of plant powders for use in confectionery industry. Food Science and Technology, 10 (4), 31–36. doi: https://doi.org/10.15673/fst.v10i4.251
  17. Romo-Zamarrón, K. F., Pérez-Cabrera, L. E., Tecante, A. (2019). Physicochemical and Sensory Properties of Gummy Candies Enriched with Pineapple and Papaya Peel Powders. Food and Nutrition Sciences, 10 (11), 1300–1312. doi: https://doi.org/10.4236/fns.2019.1011094
  18. Tipsina, N. N., Prisukhina, N. V. (2009). Food fibres in confectionery. Vestnik Krasnoyarskogo gosudarstvennogo agrarnogo universiteta, 9, 166–171. Available at: https://cyberleninka.ru/article/n/pischevye-volokna-v-konditerskom-proizvodstve
  19. Dorn, G., Savenkova, T., Sidorova, O., Golub, O. (2015). Confectionery goods for healthy diet. Foods and Raw Materials, 3 (1), 70–76. doi: https://doi.org/10.12737/11240
  20. Kilasoniya, K. G. (2004). Using feijoa and kiwi puree for production of whipped confectionary products. Pishchevaya promyshlennost', 12, 79. Available at: https://cyberleninka.ru/article/n/ispolzovanie-pyure-feyhoa-i-kivi-dlya-polucheniya-sbivnyh-konditerskih-izdeliy
  21. Yurt, M., Gezer, C. (2018). Chia tohumunun (Salvia hispanica) fonksiyonel özellikleri ve sağlik üzerine etkileri. Gida. The journal of food, 43 (3), 446–460. doi: https://doi.org/10.15237/gida.gd17093
  22. Ayaz, A., Akyol, A., Inan-Eroglu, E., Kabasakal Cetin, A., Samur, G., Akbiyik, F. (2017). Chia seed (Salvia Hispanica L.) added yogurt reduces short-term food intake and increases satiety: randomised controlled trial. Nutrition Research and Practice, 11 (5), 412. doi: https://doi.org/10.4162/nrp.2017.11.5.412
  23. Marcinek, K., Krejpcio, Z. (2017). Chia seeds (Salvia hispanica): health promoting properties and therapeutic applications – a review. Roczniki Państwowego Zakładu Higieny, 68 (2), 123–129. Available at: https://www.researchgate.net/publication/317903496_Chia_seeds_Salvia_hispanica_health_promoting_properties_and_therapeutic_applications_-_a_review
  24. Ayerza, R., Coates, W. (2011). Protein content, oil content and fatty acid profiles as potential criteria to determine the origin of commercially grown chia (Salvia hispanica L.). Industrial Crops and Products, 34 (2), 1366–1371. doi: https://doi.org/10.1016/j.indcrop.2010.12.007
  25. Sandoval-Oliveros, M. R., Paredes-López, O. (2012). Isolation and Characterization of Proteins from Chia Seeds (Salvia hispanica L.). Journal of Agricultural and Food Chemistry, 61 (1), 193–201. doi: https://doi.org/10.1021/jf3034978
  26. Oliveira-Alves, S. C., Vendramini-Costa, D. B., Betim Cazarin, C. B., Maróstica Júnior, M. R., Borges Ferreira, J. P., Silva, A. B. et. al. (2017). Characterization of phenolic compounds in chia (Salvia hispanica L.) seeds, fiber flour and oil. Food Chemistry, 232, 295–305. doi: https://doi.org/10.1016/j.foodchem.2017.04.002
  27. Commission EU. (2009). Commission decision authorizing the placing on the market of Chia seed (Salvia hispanica) as novel food ingredient under Regulation (EC), The European Parliament and of the Council. Official Journal of the Euro Union, 258/97, 294–308.
  28. Estefanía, N. G., Vanesa, Y. I., Mabel, C. T., Susana, M. N. (2013). Moisture-Dependent Engineering Properties of Chia (Salvia hispanica L.) Seeds. Food Industry. doi: https://doi.org/10.5772/53173
  29. Dyakonova, A., Stepanova, V. (2016). Usage of the nut raw materials and chia seeds to improve fatty acid composition of the smoothies. Ukrainian Food Journal, 5 (4), 713–723. doi: https://doi.org/10.24263/2304-974x-2016-5-4-10
  30. Turchyn, I., Krichkovska-Goroshko, І., Slyvka, N., Myhaylytska, О. (2017). Advisability of using chia seeds in kefir technology. Scientific Messenger LNUVMBT named after S. Z. Gzhytskyj, 19 (75), 153–156.
  31. Oliveira, M. R., Novack, M. E., Santos, C. P., Kubota, E., Rosa, C. S. (2015). Evaluation of replacing wheat flour with chia flour (Salvia hispanica L.) in pasta. Semina: Ciências Agrárias, 36 (4), 2545. doi: https://doi.org/10.5433/1679-0359.2015v36n4p2545
  32. Barrientos, V. A., Aguirre, A., Borneo, R. (2012). Chia (Salvia hispanica) can be used to manufacture sugar-snap cookies with an improved nutritional value. International Journal of Food Studies, 1 (2), 135–143. doi: https://doi.org/10.7455/ijfs/1.2.2012.a4
  33. Sevastianova, O. V., Pylypenko, L. M., Makovska, T. V., Honcharov, D. S. (2018). Nezhyrni syrkovi deserty z roslynnymy biokorektoramy. Vcheni zapysky Tavriyskoho natsionalnoho universytetu imeni V. I. Vernadskoho. Seriya: Tekhnichni nauky, 29 (2), 272–278. Available at: http://nbuv.gov.ua/UJRN/sntuts_2018_29_2_48
  34. Scapin, G., Schimdt, M. M., Prestes, R. C., Ferreira, S., Silva, A. F. C., Da Rosa, C. S. (2015). Effect of extract of chia seed (Salvia hispanica) as an antioxidant in fresh pork sausage. International Food Research Journal, 22 (3), 1195–1202. Available at: http://ifrj.upm.edu.my/22%20(03)%202015/(44).pdf
  35. Naumova, N. L., Lukin, A. A., Lulkovich, V. S. (2018). Working out receipt for meat cutlets with increased content of mineral elements for schoolchildren food. Dal'nevostochniy agrarniy vestnik, 2 (46), 120–128. doi: http://doi.org/10.24411/1999-6837-2018-12038
  36. Stepanova, V. S. (2016). Rozrobka universalnoi kompozytsiyi inhredientiv dlia pryhotuvannia sousnoi produktsiyi. Perspektyvy rozvytku miasnoi, molochnoi ta oliezhyrovoi haluzei u konteksti yevrointehratsiyi: prohr. ta materialy Piatoi Mizhnar. nauk.-tekhn. konf. Kyiv, 157–158. Available at: https://card-file.onaft.edu.ua/handle/123456789/10030
  37. Romankiewicz, D., Hassoon, W. H., Cacak-Pietrzak, G., Sobczyk, M., Wirkowska-Wojdyła, M., Ceglińska, A., Dziki, D. (2017). The Effect of Chia Seeds (Salvia hispanicaL.) Addition on Quality and Nutritional Value of Wheat Bread. Journal of Food Quality, 2017, 1–7. doi: https://doi.org/10.1155/2017/7352631
  38. Sadahira, M. S., Rodrigues, M. I., Akhtar, M., Murray, B. S., Netto, F. M. (2018). Influence of pH on foaming and rheological properties of aerated high sugar system with egg white protein and hydroxypropylmethylcellulose. LWT, 89, 350–357. doi: https://doi.org/10.1016/j.lwt.2017.10.058
  39. Muñoz, L. A., Cobos, A., Diaz, O., Aguilera, J. M. (2012). Chia seeds: Microstructure, mucilage extraction and hydration. Journal of Food Engineering, 108 (1), 216–224. doi: https://doi.org/10.1016/j.jfoodeng.2011.06.037
  40. Samateh, M., Pottackal, N., Manafirasi, S., Vidyasagar, A., Maldarelli, C., John, G. (2018). Unravelling the secret of seed-based gels in water: the nanoscale 3D network formation. Scientific Reports, 8 (1). doi: https://doi.org/10.1038/s41598-018-25691-3
  41. Timilsena, Y. P., Adhikari, R., Kasapis, S., Adhikari, B. (2015). Rheological and microstructural properties of the chia seed polysaccharide. International Journal of Biological Macromolecules, 81, 991–999. doi: https://doi.org/10.1016/j.ijbiomac.2015.09.040

Downloads

Published

2020-04-30

How to Cite

Shydakova-Kameniuka, O., Shkliaiev, O., Samokhvalova, O., Artamonova, M., Stepankova, G., Bolkhovitina, O., & Rogova, A. (2020). Harnessing the technological potential of chia seeds in the technology of cream-whipped candy masses. Eastern-European Journal of Enterprise Technologies, 2(11 (104), 52–60. https://doi.org/10.15587/1729-4061.2020.199923

Issue

Section

Technology and Equipment of Food Production