The analysis of polynomial method on evaluation of parameter of correlated non-gaussian random quantity
DOI:
https://doi.org/10.15587/1729-4061.2014.20023Keywords:
evaluation of parameters, sample, non-Gaussian random quantity, correlation, polynomial maximization methodAbstract
One of the possible solutions of the evaluation problem of parameters of non-Gaussian random quantities at their moment-cumulant description at the correlated sample is considered in the paper. The analysis of the algorithm of the adapted polynomial maximization method for finding the estimates of scalar parameter of statistically dependent non-Gaussian random quantities is given. It is shown that using the correlation measures to describe statistically dependent random sequences allows to adapt the polynomial maximization method for the case of correlated quantities. The type of stochastic polynomial, on which the correlated random sequence is distributed, according to the polynomial maximization method, is formed taking into account correlations
Using the polynomial maximization method, adapted to the correlation case for estimating the scalar parameter of asymmetric correlated random quantity is shown in the paper. It is shown that the variance of the obtained estimates at constant values of the sample volume is smaller than the variance of the estimates, obtained using the polynomial maximization method, unadapted on the correlation case. It should also be noted that taking into account the non-Gaussianity of the studied quantities in polynomial maximization method algorithms allows to obtain estimates with the best probabilistic features compared with classical algorithms of the method of moments.References
- Андерсон, Т. Введение в многомерный статистический анализ [Текст] / Т. Андерсон – М.: Государственное издательство физико-математической литературы, 1963. – 500 с.
- Бендат, Дж. Прикладной анализ случайных данных [Текст] / Дж. Бендат, А. Пирсон – М.: Мир, 1989. – 540 с.
- Van Trees, H. L. Detection, Estimation, and Modulation Theory [Тext] / H. L. Van Trees // John Wiley. - 2002. - 1470 c.
- Hayes, M. H. Statistical Digital Signal Processing and Modeling [Тext] / M. H. Hayes // New York: John Wiley & Sons. - 1996. - 330 c.
- Kay, S. Fundamentals of Statistical Signal Processing: Estimation Theory [Тext] / S. Kay // Englewood Cliffs, N. J. - 1993. – 326c.
- Tuzlukov, V. P. Signal Processing Noise [Тext] / V. P. Tuzlukov // CRC Press/ - 2002. - 676 c.
- Huang, W. N. Steady creep bending in a beam with random material parameters [Тext] / W. N. Huang, F. A. Cozzarelli // II J. Franklin Instit. - 1980. - Vol. 294, №5. - C. 323 - 337.
- Westlung, R. Properties of a random creep process [Тext] / R. Westlung // II Int. J. Solids and Structures. - 1982. - Vol. 18. №4. - C. 275 - 283.
- Соленов, В. И. Нелинейная обработка и адаптация в негауссовских помехах [Текст] / В. И. Соленов, О. И. Шелухин // Киев: КМУГА. - 1997. - 180 с.
- Kunchenko, Y. P. Polynomial Parameter Estimations of Close to Gaussian Random variables [Тext] / Y. P. Kunchenko // Germany, Aachen: Shaker Verlag, 2002. - 396 p.
- Палагин, В. В. Адаптация метода максимизации полинома для оценки параметров случайных величин по статистически-зависимой выборке [Текст] / В. В. Палагин, А. В. Ивченко // Сборник научных трудов «Системы обработки информации». Харьков. 2009.- Вып. 2(76).- С. 118-123.
- Палагин, В. В. Оценка параметра ассиметрии коррелированной негауссовской помехи методом максимизации полинома [Текст] / В. В. Палагин, А. В. Ивченко // Весник ЧГТУ. - 2009. - №2. - С.67-72.
- Anderson, Т. W. (1963). An introduction to multivariate statistical analysis. New York: John Wiley and Sons, Inc., 374.
- Bendat, J. S., Piersol, A. G. (1986). Analysis and Measurement Procedures 2nd edition. New York: John Wiley, 566.
- Van Trees, H. L. (2002). Detection, Estimation, and Modulation Theory. - Part IV: Optimum Array Processing. John Wiley, 1470.
- Hayes, M. H. (1996). Statistical Digital Signal Processing and Modeling. New York: John Wiley & Sons, 330.
- Kay, S. (1993). Fundamentals of Statistical Signal Processing: Estimation Theory. Prentice Hall, Englewood Cliffs, N.J, 326.
- Tuzlukov, V. P. (2002). Signal Processing Noise. CRC Press, 676.
- Huang, W. N. (1980). Steady creep bending in a beam with random material parameters. Franklin Instit, Vol. 294, №5., 323 – 337.
- Westlung, R. (1982). Properties of a random creep process. IR. Westlung II Int. J. Solids and Structures, Vol. 18, №4, 275 - 283.
- Solenov, V. I., Shelukhin, O. I. (1997). Nonlinear processing and adaptation in non-Gaussian noise. Ukraine, Kiev: KMUGA, 180.
- Kunchenko, Y. P. (2002). Polynomial Parameter Estimations of Close to Gaussian Random variables. Germany, Aachen: Shaker Verlag, 396.
- Palagin, V. V., Ivchenko, A. V. (2009). Adapting the method of maximizing the polynomial to estimate the parameters of random variables are statistically dependent sample. Ukraine, Kharkiv: KhUAF, Systems of information processing., № 2(76), 118-123.
- Palagin V. V., Ivchenko A. V. (2009). Parameter Estimation of asymmetry correlated non-Gaussian noise by maximizing the polynomial. Bulletin of ChSTU №2, 67-72.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Владимир Васильевич Палагин, Александр Витальевич Ивченко
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.