Determination of the laws of thermal resistance of wood in application of fire-retardant fabric coatings

Authors

  • Yuriy Tsapko National University of Life and Environmental Sciences of Ukraine Heroiv Oborony str., 15, Kyiv, Ukraine, 03041 Kyiv National University of Construction and Architecture Povitroflotsky ave., 31, Kyiv, Ukraine, 03037, Ukraine https://orcid.org/0000-0003-0625-0783
  • Оleksii Tsapko National University of Life and Environmental Sciences of Ukraine Heroiv Oborony str., 15, Kyiv, Ukraine, 03041, Ukraine https://orcid.org/0000-0003-2298-068X
  • Olga Bondarenko Kyiv National University of Construction and Architecture Povitroflotsky ave., 31, Kyiv, Ukraine, 03037, Ukraine https://orcid.org/0000-0002-8164-6473

DOI:

https://doi.org/10.15587/1729-4061.2020.200467

Keywords:

protective means, fire resistance, weight loss, surface treatment, wood burnout, fire-retardant fabric

Abstract

The creation of environmentally safe fire-retardant materials for wooden building structures will allow influencing the processes of heat resistance and physicochemical properties of the protective coating during its service life. Therefore, there is a need to study the conditions for forming a barrier to thermal conductivity and determine a mechanism of inhibiting heat transfer to the material. In this regard, a mathematical model of the thermal conductivity process when using fire-retardant fabric as a coating is developed, the solution of which allows obtaining changes in the thermal conductivity of the material. According to experimental data, it is calculated that the thermal conductivity coefficient during fire protection in the temperature range from 0 to 110 °C increases due to water evaporation and then gradually decreases to 0.25 W/(m∙°С), which corresponds to the value of coked foam. It is proved that the process of temperature inhibition consists in the formation of soot-like products that insulate the wooden structure. This made it possible to determine the conditions of fire protection of wood, formation of a barrier to thermal conductivity using fire-retardant fabric. Experimental studies confirmed that the wood sample with fire-retardant fabric withstood the temperature effect, namely, under the influence of the heat flux, the coating swelled, heat insulation continued for 900 s. Estimation of the maximum possible temperature penetration through the coating is carried out. It is found that when creating the sample surface temperature, which significantly exceeded the ignition temperature of wood, the temperature under the fabric did not reach the ignition temperature, and on the unheated surface it did not exceed 100 °C.

Thus, there are reasons to argue about the possibility of directed control of the processes of wood fire protection using fire-retardant coatings capable of forming a protective layer on the material surface, which reduces the burnout rate of wood

Author Biographies

Yuriy Tsapko, National University of Life and Environmental Sciences of Ukraine Heroiv Oborony str., 15, Kyiv, Ukraine, 03041 Kyiv National University of Construction and Architecture Povitroflotsky ave., 31, Kyiv, Ukraine, 03037

Doctor of Technical Sciences

Scientific-Research Institute for Binders and Materials named after V. D. Glukhovsk

Оleksii Tsapko, National University of Life and Environmental Sciences of Ukraine Heroiv Oborony str., 15, Kyiv, Ukraine, 03041

Posgraduate Student

Department of Technology and Design of Wood Products

Olga Bondarenko, Kyiv National University of Construction and Architecture Povitroflotsky ave., 31, Kyiv, Ukraine, 03037

PhD, Associate Professor

Department of Building Materials

References

  1. Tsapko, Y., Tsapko, А. (2017). Establishment of the mechanism and fireproof efficiency of wood treated with an impregnating solution and coatings. Eastern-European Journal of Enterprise Technologies, 3 (10 (87)), 50–55. doi: https://doi.org/10.15587/1729-4061.2017.102393
  2. Tsapko, Y., Tsapko, А. (2018). Establishment of fire protective effectiveness of reed treated with an impregnating solution and coatings. Eastern-European Journal of Enterprise Technologies, 4 (10 (94)), 62–68. doi: https://doi.org/10.15587/1729-4061.2018.141030
  3. Tsapko, Y., Tsapko, А., Bondarenko, O. (2019). Establishment of heat­exchange process regularities at inflammation of reed samples. Eastern-European Journal of Enterprise Technologies, 1 (10 (97)), 36–42. doi: https://doi.org/10.15587/1729-4061.2019.156644
  4. Tsapko, J., Tsapko, А. (2017). Simulation of the phase transformation front advancement during the swelling of fire retardant coatings. Eastern-European Journal of Enterprise Technologies, 2 (11 (86)), 50–55. doi: https://doi.org/10.15587/1729-4061.2017.73542
  5. Krüger, S., Gluth, G. J. G., Watolla, M.-B., Morys, M., Häßler, D., Schartel, B. (2016). Neue Wege: Reaktive Brandschutzbeschichtungen für Extrembedingungen. Bautechnik, 93 (8), 531–542. doi: https://doi.org/10.1002/bate.201600032
  6. Xiao, N., Zheng, X., Song, S., Pu, J. (2014). Effects of Complex Flame Retardant on the Thermal Decomposition of Natural Fiber. BioResources, 9 (3), 4924–4933. doi: https://doi.org/10.15376/biores.9.3.4924-4933
  7. Gaff, M., Kačík, F., Gašparík, M., Todaro, L., Jones, D., Corleto, R. et. al. (2019). The effect of synthetic and natural fire-retardants on burning and chemical characteristics of thermally modified teak (Tectona grandis L. f.) wood. Construction and Building Materials, 200, 551–558. doi: https://doi.org/10.1016/j.conbuildmat.2018.12.106
  8. Zhao, P., Guo, C., Li, L. (2018). Flame retardancy and thermal degradation properties of polypropylene/wood flour composite modified with aluminum hypophosphite/melamine cyanurate. Journal of Thermal Analysis and Calorimetry, 135 (6), 3085–3093. doi: https://doi.org/10.1007/s10973-018-7544-9
  9. Cirpici, B. K., Wang, Y. C., Rogers, B. (2016). Assessment of the thermal conductivity of intumescent coatings in fire. Fire Safety Journal, 81, 74–84. doi: https://doi.org/10.1016/j.firesaf.2016.01.011
  10. Nine, M. J., Tran, D. N. H., Tung, T. T., Kabiri, S., Losic, D. (2017). Graphene-Borate as an Efficient Fire Retardant for Cellulosic Materials with Multiple and Synergetic Modes of Action. ACS Applied Materials & Interfaces, 9 (11), 10160–10168. doi: https://doi.org/10.1021/acsami.7b00572
  11. Carosio, F., Alongi, J. (2016). Ultra-Fast Layer-by-Layer Approach for Depositing Flame Retardant Coatings on Flexible PU Foams within Seconds. ACS Applied Materials & Interfaces, 8 (10), 6315–6319. doi: https://doi.org/10.1021/acsami.6b00598
  12. Md Nasir, K., Ramli Sulong, N. H., Johan, M. R., Afifi, A. M. (2018). An investigation into waterborne intumescent coating with different fillers for steel application. Pigment & Resin Technology, 47 (2), 142–153. doi: https://doi.org/10.1108/prt-09-2016-0089
  13. Erdoğan, Y. (2016). Production of an insulation material from carpet and boron wastes. Bulletin Of The Mineral Research and Exploration, 152, 197–202. doi: https://doi.org/10.19111/bmre.74700
  14. Khalili, P., Tshai, K. Y., Hui, D., Kong, I. (2017). Synergistic of ammonium polyphosphate and alumina trihydrate as fire retardants for natural fiber reinforced epoxy composite. Composites Part B: Engineering, 114, 101–110. doi: https://doi.org/10.1016/j.compositesb.2017.01.049
  15. Potter, M. C. (2019). Engineering analysis. Springer. doi: https://doi.org/10.1007/978-3-319-91683-5

Downloads

Published

2020-04-30

How to Cite

Tsapko, Y., Tsapko О., & Bondarenko, O. (2020). Determination of the laws of thermal resistance of wood in application of fire-retardant fabric coatings. Eastern-European Journal of Enterprise Technologies, 2(10 (104), 13–18. https://doi.org/10.15587/1729-4061.2020.200467