Виявлення закономірностей теплостійкості деревини при застосуванні покриття з вогнезахищеної тканини

Автор(и)

  • Yuriy Tsapko Національний університет біоресурсів і природокористування України вул. Героїв Оборони, 15, м. Київ, Україна, 03041 Київський національний університет будівництва і архітектури пр. Повітрофлотський, 31, м. Київ, Україна, 03037, Україна https://orcid.org/0000-0003-0625-0783
  • Оleksii Tsapko Національний університет біоресурсів і природокористування України вул. Героїв Оборони, 15, м. Київ, Україна, 03041, Україна https://orcid.org/0000-0003-2298-068X
  • Olga Bondarenko Київський національний університет будівництва і архітектури пр. Повітрофлотський, 31, м. Київ, Україна, 03037, Україна https://orcid.org/0000-0002-8164-6473

DOI:

https://doi.org/10.15587/1729-4061.2020.200467

Ключові слова:

захисні засоби, вогнестійкість, втрата маси, оброблення поверхні, вигорання деревини, вогнестійка тканина

Анотація

Створення екологічно безпечних вогнезахисних матеріалів для дерев’яних будівельних конструкцій дозволить впливати на процеси термостійкості і фізико-хімічні властивості захисного покриття протягом його терміну експлуатації. Тому виникає необхідність дослідження умов утворення бар'єру для теплопровідності і встановлення механізму гальмування передачі тепла до матеріалу. У зв’язку з цим розроблена математична модель процесу теплопровідності при застосуванні вогнезахисної тканини в якості покриття, рішення якої дозволяє отримати зміну теплопровідності матеріалу. За експериментальними даними розраховано, що коефіцієнт теплопровідності при вогнезахисті, в межах температури від 0 до 110 °С, підвищується за рахунок випаровування води, а потім поступово знижується до згодом 0,25 Вт/(м·°С), що відповідає значенню пінококсу. Доведено, що процес гальмування температури полягає в утворенні сажоподібних продуктів які ізолюють дерев’яну конструкцію. Завдяки цьому стало можливим визначення умов вогнезахисту деревини, шляхом утворення бар'єру для теплопровідності з вогнезахищеної тканини. Експериментальними дослідженнями підтверджено, що зразок деревини вогнезахищеної тканиною витримав температурний вплив, а саме – при впливі теплового потоку відбувалося спучування покриття, теплоізолювання тривало протягом 900 с. Проведено оцінку максимально можливого проникнення температури через товщу покриття. Встановлено наступне: при створені температури поверхні зразка, що значно перевищила температуру займання деревини, під тканиною температура не досягла температури займання, а на необігрівній поверхні не перевищила 100 °С.

Таким чином, є підстави стверджувати про можливість спрямованого регулювання процесів вогнезахисту деревини шляхом застосування вогнезахисних покриттів, здатних утворювати на поверхні матеріалу захисний шар, який гальмує швидкість вигорання деревини

Біографії авторів

Yuriy Tsapko, Національний університет біоресурсів і природокористування України вул. Героїв Оборони, 15, м. Київ, Україна, 03041 Київський національний університет будівництва і архітектури пр. Повітрофлотський, 31, м. Київ, Україна, 03037

Доктор технічних наук

Науково-дослідний інститут в’яжучих речовин і матеріалів ім. В. Д. Глуховського

Оleksii Tsapko, Національний університет біоресурсів і природокористування України вул. Героїв Оборони, 15, м. Київ, Україна, 03041

Аспірант

Кафедра технологій та дизайну виробів з деревини

Olga Bondarenko, Київський національний університет будівництва і архітектури пр. Повітрофлотський, 31, м. Київ, Україна, 03037

Кандидат технічних наук, доцент

Кафедра будівельних матеріалів

Посилання

  1. Tsapko, Y., Tsapko, А. (2017). Establishment of the mechanism and fireproof efficiency of wood treated with an impregnating solution and coatings. Eastern-European Journal of Enterprise Technologies, 3 (10 (87)), 50–55. doi: https://doi.org/10.15587/1729-4061.2017.102393
  2. Tsapko, Y., Tsapko, А. (2018). Establishment of fire protective effectiveness of reed treated with an impregnating solution and coatings. Eastern-European Journal of Enterprise Technologies, 4 (10 (94)), 62–68. doi: https://doi.org/10.15587/1729-4061.2018.141030
  3. Tsapko, Y., Tsapko, А., Bondarenko, O. (2019). Establishment of heat­exchange process regularities at inflammation of reed samples. Eastern-European Journal of Enterprise Technologies, 1 (10 (97)), 36–42. doi: https://doi.org/10.15587/1729-4061.2019.156644
  4. Tsapko, J., Tsapko, А. (2017). Simulation of the phase transformation front advancement during the swelling of fire retardant coatings. Eastern-European Journal of Enterprise Technologies, 2 (11 (86)), 50–55. doi: https://doi.org/10.15587/1729-4061.2017.73542
  5. Krüger, S., Gluth, G. J. G., Watolla, M.-B., Morys, M., Häßler, D., Schartel, B. (2016). Neue Wege: Reaktive Brandschutzbeschichtungen für Extrembedingungen. Bautechnik, 93 (8), 531–542. doi: https://doi.org/10.1002/bate.201600032
  6. Xiao, N., Zheng, X., Song, S., Pu, J. (2014). Effects of Complex Flame Retardant on the Thermal Decomposition of Natural Fiber. BioResources, 9 (3), 4924–4933. doi: https://doi.org/10.15376/biores.9.3.4924-4933
  7. Gaff, M., Kačík, F., Gašparík, M., Todaro, L., Jones, D., Corleto, R. et. al. (2019). The effect of synthetic and natural fire-retardants on burning and chemical characteristics of thermally modified teak (Tectona grandis L. f.) wood. Construction and Building Materials, 200, 551–558. doi: https://doi.org/10.1016/j.conbuildmat.2018.12.106
  8. Zhao, P., Guo, C., Li, L. (2018). Flame retardancy and thermal degradation properties of polypropylene/wood flour composite modified with aluminum hypophosphite/melamine cyanurate. Journal of Thermal Analysis and Calorimetry, 135 (6), 3085–3093. doi: https://doi.org/10.1007/s10973-018-7544-9
  9. Cirpici, B. K., Wang, Y. C., Rogers, B. (2016). Assessment of the thermal conductivity of intumescent coatings in fire. Fire Safety Journal, 81, 74–84. doi: https://doi.org/10.1016/j.firesaf.2016.01.011
  10. Nine, M. J., Tran, D. N. H., Tung, T. T., Kabiri, S., Losic, D. (2017). Graphene-Borate as an Efficient Fire Retardant for Cellulosic Materials with Multiple and Synergetic Modes of Action. ACS Applied Materials & Interfaces, 9 (11), 10160–10168. doi: https://doi.org/10.1021/acsami.7b00572
  11. Carosio, F., Alongi, J. (2016). Ultra-Fast Layer-by-Layer Approach for Depositing Flame Retardant Coatings on Flexible PU Foams within Seconds. ACS Applied Materials & Interfaces, 8 (10), 6315–6319. doi: https://doi.org/10.1021/acsami.6b00598
  12. Md Nasir, K., Ramli Sulong, N. H., Johan, M. R., Afifi, A. M. (2018). An investigation into waterborne intumescent coating with different fillers for steel application. Pigment & Resin Technology, 47 (2), 142–153. doi: https://doi.org/10.1108/prt-09-2016-0089
  13. Erdoğan, Y. (2016). Production of an insulation material from carpet and boron wastes. Bulletin Of The Mineral Research and Exploration, 152, 197–202. doi: https://doi.org/10.19111/bmre.74700
  14. Khalili, P., Tshai, K. Y., Hui, D., Kong, I. (2017). Synergistic of ammonium polyphosphate and alumina trihydrate as fire retardants for natural fiber reinforced epoxy composite. Composites Part B: Engineering, 114, 101–110. doi: https://doi.org/10.1016/j.compositesb.2017.01.049
  15. Potter, M. C. (2019). Engineering analysis. Springer. doi: https://doi.org/10.1007/978-3-319-91683-5

##submission.downloads##

Опубліковано

2020-04-30

Як цитувати

Tsapko, Y., Tsapko О., & Bondarenko, O. (2020). Виявлення закономірностей теплостійкості деревини при застосуванні покриття з вогнезахищеної тканини. Eastern-European Journal of Enterprise Technologies, 2(10 (104), 13–18. https://doi.org/10.15587/1729-4061.2020.200467

Номер

Розділ

Екологія