Establishing changes in the technical parameters of nipple rubber for milking machines and their impact on operational characteristics

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.200635

Keywords:

nipple rubber, milking machine, milking cup, control of rubber parameters, operation of nipple rubber

Abstract

Nipple rubber is an important part of a milking machine, one of its key elements. This is the only component of a milking plant that has direct contact with the surface of a cow udder. In addition, nipple rubber is the most loaded component of a milking machine. During the milking process, it is compressed and unclenched more than 400 times. In order to maximize the effect of the use of rubber, it is necessary to calculate the conditions of its use correctly, to monitor technical parameters in due time. The task of the study is to establish changes in the technical parameters of the nipple rubber of milking machines and their impact on the performance of the article.

In the course of the research, it was established that the service life of all kinds of nipple rubbers was 1,000 hours, which, if used for 8 hours a day, corresponds to 125 days or 4 months of operation. When used for 1,000 hours, the rubber stiffness varies within significant limits and an average is: for products made of silicone 2,849.61±52.23–3,343.76±51.26 N/m; made of the material of rubber mixtures – 2,597.76±78.26–2,821.43±55.24 N/m. The readiness coefficient of all products is 1. Using electron microscopy, it was possible to establish the changes of the inner surface of nipple rubber after operating for 125 days/1,000 hours and after operating for 250 days/2,000 hours. It is proved that all its basic parameters change during operation. The weight of an article changes by 8.5 %, the depth – by 37 %, the wall thickness – by 2.5 %, and the stretching length – by 27 %. The high positive correlation dependence (r=+0.939) between the nipple rubber stiffness and milking intensity was found.

The studied indicators are important for determining the performance and nipple rubber suitability for use. The conducted research offers a real possibility of taking into consideration the qualitative parameters of nipple rubber during their selection and subsequent operation

Author Biographies

Andriy Paliy, Kharkiv Petro Vasylenko National Technical University of Agriculture Alchevskih str., 44, Kharkiv, Ukraine, 61002

Doctor of Agricultural Sciences, Associate Professor

Department of Technical Systems and Animal Husbandry Technologies

Alexander Nanka, Kharkiv Petro Vasylenko National Technical University of Agriculture Alchevskih str., 44, Kharkiv, Ukraine, 61002

PhD, Professor, Rector

Mykhailo Marchenko, Kharkiv Petro Vasylenko National Technical University of Agriculture Alchevskih str., 44, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of Technical Systems and Animal Husbandry Technologies

Vadym Bredykhin, Kharkiv Petro Vasylenko National Technical University of Agriculture Alchevskih str., 44, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of Physics and Theoretical Mechanics

Anatoliy Paliy, National Scientific Center «Institute of Experimental and Clinical Veterinary Medicine» Pushkinska str., 83, Kharkiv, Ukraine, 61023

Doctor of Veterinary Sciences, Professor

Laboratory of Veterinary Sanitation and Parasitology

Julia Negreba, Sumy National Agrarian University Herasym Kondratiev str., 160, Sumy, Ukraine, 40021

Senior Lecturer

Department of Epizootology and Parasitology

Larisa Lazorenko, Sumy National Agrarian University Herasym Kondratiev str., 160, Sumy, Ukraine, 40021

Senior Lecturer

Department of Epizootology and Parasitology

Alexander Panasenko, Sumy National Agrarian University Herasym Kondratiev str., 160, Sumy, Ukraine, 40021

PhD, Senior Lecturer

Department of Virology, Pathology of Poultry Diseases

Zhanna Rybachuk, Polissia National University Staryi blvd., 7, Zhytomyr, Ukraine, 10008

PhD, Associate Professor

Department of Microbiology, Pharmacology and Epizootology

Oleksii Musiienko, Sumy National Agrarian University Herasym Kondratiev str., 160, Sumy, Ukraine, 40021

PhD, Associate Professor

Department of Therapy, Pharmacology, Clinical Diagnostics and Chemistry

References

  1. Kiselev, L. Y., Kamalov, R. A., Borisov, M. Y., Fedoseeva, N. A., Sanova, Z. S. (2019). Modern Technologies for Robotic Cow Milking. Russian Agricultural Sciences, 45 (4), 382–385. doi: https://doi.org/10.3103/s1068367419040062
  2. Nanka, O., Shigimaga, V., Paliy, A., Sementsov, V., Paliy, A. (2018). Development of the system to control milk acidity in the milk pipeline of a milking robot. Eastern-European Journal of Enterprise Technologies, 3 (9 (93)), 27–33. doi: https://doi.org/10.15587/1729-4061.2018.133159
  3. Odorčić, M., Rasmussen, M. D., Paulrud, C. O., Bruckmaier, R. M. (2019). Review: Milking machine settings, teat condition and milking efficiency in dairy cows. Animal, 13 (S1), s94–s99. doi: https://doi.org/10.1017/s1751731119000417
  4. Dmytriv, V., Dmytriv, I., Lavryk, Y., Horodeckyy, I. (2018). Models of adaptation of the milking machines systems. BIO Web of Conferences, 10, 02004. doi: https://doi.org/10.1051/bioconf/20181002004
  5. Tse, C., Barkema, H. W., DeVries, T. J., Rushen, J., Pajor, E. A. (2018). Impact of automatic milking systems on dairy cattle producers’ reports of milking labour management, milk production and milk quality. Animal, 12 (12), 2649–2656. doi: https://doi.org/10.1017/s1751731118000654
  6. Shkromada, O., Skliar, O., Paliy, A., Ulko, L., Gerun, I., Naumenko, O. et. al. (2019). Development of measures to improve milk quality and safety during production. Eastern-European Journal of Enterprise Technologies, 3 (11 (99)), 30–39. doi: https://doi.org/10.15587/1729-4061.2019.168762
  7. Fahim, A., Kamboj, M., Sirohi, A., Bhakat, M., Prasad, S., Gupta, R. (2018). Milking machine induced teat reactions in crossbred cows milked in automated herringbone milking parlour. The Indian journal of animal sciences, 88 (12), 1412–1415.
  8. Dmytriv, V. T. (2015). Adaptive machine milking system. Mechanization in Agriculture. International Scientific: Scientific Applied and Informational Journal, 10, 15–18.
  9. Neuheuser, A.-L., Belo, C., Bruckmaier, R. M. (2017). Technical note: Reduced pulsation chamber vacuum at normal pulsation rate and ratio provides adequate prestimulation to induce oxytocin release and milk ejection while simultaneous milk flow is prevented. Journal of Dairy Science, 100 (10), 8609–8613. doi: https://doi.org/10.3168/jds.2017-12937
  10. Martin, L. M., Stöcker, C., Sauerwein, H., Büscher, W., Müller, U. (2018). Evaluation of inner teat morphology by using high-resolution ultrasound: Changes due to milking and establishment of measurement traits of the distal teat canal. Journal of Dairy Science, 101 (9), 8417–8428. doi: https://doi.org/10.3168/jds.2018-14500
  11. Ul'yanov, V. A., Hripin, V. A., Tsyganov, N. V., Dadenko, V. A., Hripin, A. A. (2018). Teoreticheskie issledovaniya po opredeleniyu davleniya stenok soskovoy reziny na sosok vymeni korovy. Vestnik Ryazanskogo gosudarstvennogo agrotehnologicheskogo universiteta im. P. A. Kostycheva, 2, 121–126.
  12. Penry, J. F., Upton, J., Mein, G. A., Rasmussen, M. D., Ohnstad, I., Thompson, P. D., Reinemann, D. J. (2017). Estimating teat canal cross-sectional area to determine the effects of teat-end and mouthpiece chamber vacuum on teat congestion. Journal of Dairy Science, 100 (1), 821–827. doi: https://doi.org/10.3168/jds.2016-11533
  13. Palii, A. P., Nanka, O. V., Naumenko, O. A., Prudnikov, V. G., Paliy, A. P. (2019). Preconditions for eco-friendly milk production on the modern dairy complexes. Ukrainian Journal of Ecology, 9 (1), 56–62.
  14. Bhakat, C. (2019). A Review on Sub Clinical Mastitis in Dairy Cattle. Int. J. Pure App. Biosci., 6 (12), 1291–1299. doi: https://doi.org/10.31220/osf.io/ja7dp
  15. Wieland, M., Virkler, P. D., Borkowski, A. H., Älveby, N., Wood, P., Nydam, D. V. (2018). An observational study investigating the association of ultrasonographically assessed machine milking-induced changes in teat condition and teat-end shape in dairy cows. Animal, 13 (2), 341–348. doi: https://doi.org/10.1017/s1751731118001246
  16. Gálik, R., Boďo Š Staroňová, L. (2016). Monitoring the inner surface of teat cup liners made from different materials. Research in Agricultural Engineering, 61, S74–S78. doi: https://doi.org/10.17221/50/2015-rae
  17. Dmytriv, V., Аdamchuk, V., Dmytriv, I. (2015). Adaptive machine milking with the pneumatic electric magnetic pulsator. MOTROL. Commission of Motorization and Energetics in Agriculture, 17 (9), 83–87.
  18. Paliy, A. P., Nanka, O. V., Lutcenko, M. M., Naumenko, O. A., Paliy, A. P. (2018). Influence of dust content in milking rooms on operation modes of milking machine pulsators. Ukrainian Journal of Ecology, 8 (3), 66–70.
  19. SOU 74.3-37-273:2005. Tekhnika silskohospodarska. Ustanovky doilni dlia koriv. Metody vyprobuvan. Minahropolityky Ukrainy (2005). Kyiv, 46.
  20. Palii, A. P. (2013). Doslidzhennia fizyko-mekhanichnykh vlastyvostei diikovoi humy doilnykh stakaniv. Naukovo-tekhnichnyi biuleten, 109 (2), 86–90.
  21. TU 2539-007-76503135-2011. Soskovaya rezina DD 00.041A dlya komplektatsii doil'nyh stakanov. Available at: http://docs.cntd.ru/document/437156326
  22. Vlasov, A. I., Elsukov, K. A., Panfilov, Yu. V. (2011). Metody mikroskopii. Moscow: Izd-vo MGTU im. N. E. Baumana, 280.
  23. Besier, J., Lind, O., Bruckmaier, R. M. (2015). Dynamics of teat-end vacuum during machine milking: types, causes and impacts on teat condition and udder health – a literature review. Journal of Applied Animal Research, 44 (1), 263–272. doi: https://doi.org/10.1080/09712119.2015.1031780
  24. Gleeson, D. E., O’Callaghan, E. J., Rath, M. V. (2004). Effect of liner design, pulsator setting, and vacuum level on bovine teat tissue changes and milking characteristics as measured by ultrasonography. Irish Veterinary Journal, 57 (5), 289. doi: https://doi.org/10.1186/2046-0481-57-5-289
  25. Nørstebø, H., Rachah, A., Dalen, G., Rønningen, O., Whist, A. C., Reksen, O. (2018). Milk-flow data collected routinely in an automatic milking system: an alternative to milking-time testing in the management of teat-end condition? Acta Veterinaria Scandinavica, 60 (1). doi: https://doi.org/10.1186/s13028-018-0356-x
  26. Mayntz, M., Sender, G., Östensson, K., Landau, D. (2000). Influence of collapsing teat cup liners on teat tissue in dairy cows. Milchwissenschaft, 55 (5), 243–245.
  27. Palii, A. P. (2017). Innovations in determining the quality of liners of milking machines. Tavriyskyi naukovyi visnyk, 97, 160–164.
  28. Paliy, A. P. (2017). System state estimation teat highly productive cows in industrial their use. Visnyk Sumskoho natsionalnoho ahrarnoho universytetu, 5 (1 (31)), 119–123.
  29. Penry, J. F., Crump, P. M., Ruegg, P. L., Reinemann, D. J. (2017). Short communication: Cow- and quarter-level milking indicators and their associations with clinical mastitis in an automatic milking system. Journal of Dairy Science, 100 (11), 9267–9272. doi: https://doi.org/10.3168/jds.2017-12839
  30. Paliy, A. P. (2016). Issledovanie doil'noy reziny na osnove primeneniya innovatsionnyh tehnologiy. Motrol. Commission of Motorization and Energetics in Agriculture. An international journal on operation of farm and agri-food industry machinery, 18 (7), 9–13.

Downloads

Published

2020-04-30

How to Cite

Paliy, A., Nanka, A., Marchenko, M., Bredykhin, V., Paliy, A., Negreba, J., Lazorenko, L., Panasenko, A., Rybachuk, Z., & Musiienko, O. (2020). Establishing changes in the technical parameters of nipple rubber for milking machines and their impact on operational characteristics. Eastern-European Journal of Enterprise Technologies, 2(1 (104), 78–87. https://doi.org/10.15587/1729-4061.2020.200635

Issue

Section

Engineering technological systems