Axially symmetric temperature problem for the body system cylinder-layer
DOI:
https://doi.org/10.15587/1729-4061.2014.20097Keywords:
axially symmetric temperature problem, isotropic materials, non-ideal thermal contact, contact conductanceAbstract
The solution of the axially symmetric temperature problem for the body system cylinder-sphere, which lies on a rigid base with a circular notch in the case of isotropic materials was built. The thermal contact between the bodies is assumed as non-ideal. The developed method for contact problems solution is based on using Hankel integral transforms and Fourier method of separation of variables for solving heat equations. The solution of boundary value problem for finding temperature fields is reduced to the determination of some constants from the system of linear algebraic equations. As a result, formulas for determining the temperature fields at different temperature conditions on the lateral surfaces of the cylinder and the sphere were obtained. The influence of the contact conductance on the temperature fields distribution in the contact area between two bodies was investigated. Numerical calculations and solution analysis indicate that the contact conductance significantly affects the temperature fields distribution in the contact area of two bodies.
References
- Mesnyankin, S. Yu. Solid-solid thermal contact problems: current understanding [Теxt] / S. Yu. Mesnyankin, A. G. Vikulov, D. G. Vikulov // Physics-Uspekhi. – 2009. – Vol. 52 (9). – P. 891-914.
- Грилицкий, Д. В. Осесимметричные контактные задачи теории упругости и термоупругости [Текст] / Д. Грилицкий, Я. Кизыма. – Львов : Вища школа : Изд-во при Львов. ун-те, 1981. – 136 с.
- Madhusudana, C. V. Thermal contact conductance [Теxt] / C. V. Madhusudana. – New York : Springer-Verlag, 1996. – 168 p.
- Окрепкий, Б. С. Осесиметрична температурна задача для системи тіл циліндр-півпростір при неідеальному тепловому контакті [Текст] / Б. С. Окрепкий, М. Я. Шелестовська // Вісник Тернопільського державного технічного університету. – 2005. – № 3. – С. 23-27.
- Окрепкий, Б. С. Осесиметрична температурна задача для системи тіл циліндр-півпростір при неідеальному тепловому контакті з врахуванням анізотропії матеріалів [Текст] / Б. С. Окрепкий, Ф. М. Мигович // Вісник Тернопільського державного технічного університету. – 2009. – № 4. – С. 188-192.
- Окрепкий, Б. С. Осесиметрична температурна задача для системи тіл циліндр-шар при неідеальному тепловому контакті [Текст] / Б. С. Окрепкий, М. Я. Шелестовська // Вісник Тернопільського національного технічного – університету. – 2010. – Т. 15 (3). – С. 171-176.
- Mandrik, P. A. Solution of a heat-conduction problem for a finite cylinder and semispace under mixed local boundary conditions in the plane of their contact [Теxt] / P. A. Mandrik // Journal of Engineering Physics and Thermophysics. – 2001. – Vol. 74 (5). –Р. 1262-1271.
- Mikic, B. B. Thermal contact conductance; theoretical considerations international [Теxt] / B. B. Mikic // Int. J. Heat Mass Transfer. – 1974. – Vol. 17 (2). – P. 205-214.
- Ayers, G. H. Thermal Contact Conductance of Composite Cylinders [Теxt] / G. H. Ayers, L. S. Fletcher, C. V. Madhusudana // Journal of Thermophysics and Heat Transfer. – 1997. – Vol. 11 (1). – P. 72-81.
- Madhusudana, C. V. Thermal conductance of cylindrical joints [Теxt] / C. V. Madhusudana // Int. J. Heat Mass Transfer. – 1999. – Vol. 42 (7). – Р. 1273-1287.
- Beck, J. V. Steady-state temperature distribution for infinite region outside a partially heated cylinder [Теxt] / J. V. Beck, D. Yen, B. Johnson // Chem. Eng. Commun. – 1984. – Vol. 26 (4-6). – Р. 355-367.
- Коваленко, А. Д. Основы термоупругости [Текст] / А. Д. Коваленко. – К. : Наукова думка, 1970. – 304 с.
- Sneddon, I. N. Fourier Transforms [Теxt] / I. N. Sneddon. – New York : McGraw-Hill, 1951. – 542 p.
- Мигович, Ф. М. Обчислення групи невласних інтегралів, які містять функції Бесселя І-го роду [Текст] / Федір Мигович, Богдан Окрепкий // Зб. наук. праць академії наук України. – 1995. – № 8. – С. 133-137.
- Mesnyankin, S. Yu., Vikulov, A. G., Vikulov, D. G. (2009). Solidsolidthermal contact problems: current understanding. Physics-Uspekhi. 52 (9), 891-914.
- Hrilitskyi, D. V., Kizyma, Ya. M. (1981). Axially symmetric contact tasks of the theory of elasticity and thermoelasticity. Lvov, USSR : Vyshcha shkola, 136.
- Madhusudana, C. V. (1996). Thermal contact conductance. New York : Springer-Verlag, 168.
- Okrepkyi, B. S., Shelestovskа M. Ya. (2005). Axially symmetric temperature task for the body system cylinder-semispaceunder under non-ideal heat contact. Scientific Journal of the Ternopil State Technical University. (3), 23-27.
- Okrepkyi, B. S., Myhovych, F. M. (2009). Axially symmetric temperature task for the body system cylinder-semispaceunder under non-ideal heat contact to the registration of anisotropy of materials. Scientific Journal of the Ternopil State Technical University. (4), 188-192.
- Okrepkyi, B. S., Shelestovskа M. Ya. (2010). Axially symmetric temperature task for the body system cylinder-layer under nonideal heat contact. Scientific Journal of the Ternopil State Technical University. 15 (3), 171-176.
- Mandrik, P. A. (2001). Solution of a heat-conduction problem for a finite cylinder and semispace under mixed local boundary conditions in the plane of their contact. Journal of Engineering Physics and Thermophysics. Vol. 74 (5), 1262-1271.
- Mikic, B. B. (1974). Thermal contact conductance; theoretical considerations international. Int. J. Heat Mass Transfer. 17 (2), 205-214.
- Ayers, G. H., Fletcher, L. S., Madhusudana, C. V. (1997). Thermal Contact Conductance of Composite Cylinders. Journal of Thermophysics and Heat Transfer. 11 (1), 72-81.
- Madhusudana, C. V. (1999). Thermal conductance of cylindrical joints. Int. J. Heat Mass Transfer. 42 (7), 1273-1287.
- Beck, J. V., Yen, D., Johnson, B. (1984). Steady-state temperature distribution for infinite region outside a partially heated cylinder Chem. Eng. Commun. – 26 (4-6), 355-367.
- Kovalenko, A. D. (1970). Thermoelasticity. Kiev : Nauk. dumka, 304.
- Sneddon, I. N. (1951). Fourier Transforms. New York : McGraw-Hill, 542.
- Myhovych, F. M., Okrepkyi, B. S. (1995). Calculation group improper integrals containing Bessel functions of the first kind. Zb. nauk. Prats AN Ukraine, (8), 133-137.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Андрій Миколайович Алілуйко, Богдан Степанович Окрепкий
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.