Axially symmetric temperature problem for the body system cylinder-layer

Authors

DOI:

https://doi.org/10.15587/1729-4061.2014.20097

Keywords:

axially symmetric temperature problem, isotropic materials, non-ideal thermal contact, contact conductance

Abstract

The solution of the axially symmetric temperature problem for the body system cylinder-sphere, which lies on a rigid base with a circular notch in the case of isotropic materials was built. The thermal contact between the bodies is assumed as non-ideal. The developed method for contact problems solution is based on using Hankel integral transforms and Fourier method of separation of variables for solving heat equations. The solution of boundary value problem for finding temperature fields is reduced to the determination of some constants from the system of linear algebraic equations. As a result, formulas for determining the temperature fields at different temperature conditions on the lateral surfaces of the cylinder and the sphere were obtained. The influence of the contact conductance on the temperature fields distribution in the contact area between two bodies was investigated. Numerical calculations and solution analysis indicate that the contact conductance significantly affects the temperature fields distribution in the contact area of two bodies.

Author Biographies

Андрій Миколайович Алілуйко, Ternopol National Economical University Lvivska Str., 11, Ternopol, 46004

PhD

Department of Economic and Mathematical Modeling

Богдан Степанович Окрепкий, Ternopol National Economical University Lvivska Str., 11, Ternopol, 46004

PhD

Department of Economic and Mathematical Modeling 

 

References

  1. Mesnyankin, S. Yu. Solid-solid thermal contact problems: current understanding [Теxt] / S. Yu. Mesnyankin, A. G. Vikulov, D. G. Vikulov // Physics-Uspekhi. – 2009. – Vol. 52 (9). – P. 891-914.
  2. Грилицкий, Д. В. Осесимметричные контактные задачи теории упругости и термоупругости [Текст] / Д. Грилицкий, Я. Кизыма. – Львов : Вища школа : Изд-во при Львов. ун-те, 1981. – 136 с.
  3. Madhusudana, C. V. Thermal contact conductance [Теxt] / C. V. Madhusudana. – New York : Springer-Verlag, 1996. – 168 p.
  4. Окрепкий, Б. С. Осесиметрична температурна задача для системи тіл циліндр-півпростір при неідеальному тепловому контакті [Текст] / Б. С. Окрепкий, М. Я. Шелестовська // Вісник Тернопільського державного технічного університету. – 2005. – № 3. – С. 23-27.
  5. Окрепкий, Б. С. Осесиметрична температурна задача для системи тіл циліндр-півпростір при неідеальному тепловому контакті з врахуванням анізотропії матеріалів [Текст] / Б. С. Окрепкий, Ф. М. Мигович // Вісник Тернопільського державного технічного університету. – 2009. – № 4. – С. 188-192.
  6. Окрепкий, Б. С. Осесиметрична температурна задача для системи тіл циліндр-шар при неідеальному тепловому контакті [Текст] / Б. С. Окрепкий, М. Я. Шелестовська // Вісник Тернопільського національного технічного – університету. – 2010. – Т. 15 (3). – С. 171-176.
  7. Mandrik, P. A. Solution of a heat-conduction problem for a finite cylinder and semispace under mixed local boundary conditions in the plane of their contact [Теxt] / P. A. Mandrik // Journal of Engineering Physics and Thermophysics. – 2001. – Vol. 74 (5). –Р. 1262-1271.
  8. Mikic, B. B. Thermal contact conductance; theoretical considerations international [Теxt] / B. B. Mikic // Int. J. Heat Mass Transfer. – 1974. – Vol. 17 (2). – P. 205-214.
  9. Ayers, G. H. Thermal Contact Conductance of Composite Cylinders [Теxt] / G. H. Ayers, L. S. Fletcher, C. V. Madhusudana // Journal of Thermophysics and Heat Transfer. – 1997. – Vol. 11 (1). – P. 72-81.
  10. Madhusudana, C. V. Thermal conductance of cylindrical joints [Теxt] / C. V. Madhusudana // Int. J. Heat Mass Transfer. – 1999. – Vol. 42 (7). – Р. 1273-1287.
  11. Beck, J. V. Steady-state temperature distribution for infinite region outside a partially heated cylinder [Теxt] / J. V. Beck, D. Yen, B. Johnson // Chem. Eng. Commun. – 1984. – Vol. 26 (4-6). – Р. 355-367.
  12. Коваленко, А. Д. Основы термоупругости [Текст] / А. Д. Коваленко. – К. : Наукова думка, 1970. – 304 с.
  13. Sneddon, I. N. Fourier Transforms [Теxt] / I. N. Sneddon. – New York : McGraw-Hill, 1951. – 542 p.
  14. Мигович, Ф. М. Обчислення групи невласних інтегралів, які містять функції Бесселя І-го роду [Текст] / Федір Мигович, Богдан Окрепкий // Зб. наук. праць академії наук України. – 1995. – № 8. – С. 133-137.
  15. Mesnyankin, S. Yu., Vikulov, A. G., Vikulov, D. G. (2009). Solidsolidthermal contact problems: current understanding. Physics-Uspekhi. 52 (9), 891-914.
  16. Hrilitskyi, D. V., Kizyma, Ya. M. (1981). Axially symmetric contact tasks of the theory of elasticity and thermoelasticity. Lvov, USSR : Vyshcha shkola, 136.
  17. Madhusudana, C. V. (1996). Thermal contact conductance. New York : Springer-Verlag, 168.
  18. Okrepkyi, B. S., Shelestovskа M. Ya. (2005). Axially symmetric temperature task for the body system cylinder-semispaceunder under non-ideal heat contact. Scientific Journal of the Ternopil State Technical University. (3), 23-27.
  19. Okrepkyi, B. S., Myhovych, F. M. (2009). Axially symmetric temperature task for the body system cylinder-semispaceunder under non-ideal heat contact to the registration of anisotropy of materials. Scientific Journal of the Ternopil State Technical University. (4), 188-192.
  20. Okrepkyi, B. S., Shelestovskа M. Ya. (2010). Axially symmetric temperature task for the body system cylinder-layer under nonideal heat contact. Scientific Journal of the Ternopil State Technical University. 15 (3), 171-176.
  21. Mandrik, P. A. (2001). Solution of a heat-conduction problem for a finite cylinder and semispace under mixed local boundary conditions in the plane of their contact. Journal of Engineering Physics and Thermophysics. Vol. 74 (5), 1262-1271.
  22. Mikic, B. B. (1974). Thermal contact conductance; theoretical considerations international. Int. J. Heat Mass Transfer. 17 (2), 205-214.
  23. Ayers, G. H., Fletcher, L. S., Madhusudana, C. V. (1997). Thermal Contact Conductance of Composite Cylinders. Journal of Thermophysics and Heat Transfer. 11 (1), 72-81.
  24. Madhusudana, C. V. (1999). Thermal conductance of cylindrical joints. Int. J. Heat Mass Transfer. 42 (7), 1273-1287.
  25. Beck, J. V., Yen, D., Johnson, B. (1984). Steady-state temperature distribution for infinite region outside a partially heated cylinder Chem. Eng. Commun. – 26 (4-6), 355-367.
  26. Kovalenko, A. D. (1970). Thermoelasticity. Kiev : Nauk. dumka, 304.
  27. Sneddon, I. N. (1951). Fourier Transforms. New York : McGraw-Hill, 542.
  28. Myhovych, F. M., Okrepkyi, B. S. (1995). Calculation group improper integrals containing Bessel functions of the first kind. Zb. nauk. Prats AN Ukraine, (8), 133-137.

Published

2014-02-12

How to Cite

Алілуйко, А. М., & Окрепкий, Б. С. (2014). Axially symmetric temperature problem for the body system cylinder-layer. Eastern-European Journal of Enterprise Technologies, 1(4(67), 10–16. https://doi.org/10.15587/1729-4061.2014.20097

Issue

Section

Mathematics and Cybernetics - applied aspects