Approximation an estimate of the ss-distributions stability factor

Authors

DOI:

https://doi.org/10.15587/1729-4061.2014.20245

Keywords:

stable distributions, stability factor estimate, fractional moments, asymptotic variance of estimates

Abstract

The problem of approximating a stability factor estimate of alpha-stable distributions, obtained by the method of fractional moments,has been considered. Such distributions are widely used in models of stochastic processes, describing a wide range of processes and phenomena.

The analysis of existing methods for estimating parameters of stable distributions has been carried out. One of the new and promising methods for solving the problem under consideration is the method of non-integer (fractional) moments.

It has been noted that the formula for calculating the stability factor estimate, developed in accordance with this method, contains a non-elementary and rarely used function (inverse to a gamma function), that significantly complicates using such estimate in applied problems.

The problem of approximating the stability factor estimate has been set and successfully solved in the paper. The original dependence has been approximated with a simple fractional-linear function with quite a sufficient practical accuracy.

The suggested approximation has given an opportunity of adjusting an asymptotic variance estimate of the parameter under estimation regarding its true value. As a result, the discrepancy between a theoretical estimate and the data of numerical experiments has been eliminated.

The conducted numerical modeling has fully justified obtained results.

Author Biography

Вадим Леонидович Шергин, Kharkov National University of Radio Electronics Lenina av., 14, Kharkov, Ukraine, 61166

Candidat of technical science, docent

Department of artificial intelligence

References

  1. Гнеденко, Б. В. Пpедельные pаспpеделения для сумм независимых случайных величин [Текст] / Б. В. Гнеденко, А. Н. Колмогоpов – М.–Л.: ГИТТЛ - 1949. –264 с.
  2. Золотарев, В. М. Одномерные устойчивые распределения [Текст] / В. М. Золотарев – М., Наука, 1983. – 304 с.
  3. Nolan, J. P. Stable distributions - models for heavy tailed data [Electronic resource] / Boston: Birkhauser Unfinished manuscript, Chapter 1. – Available: http://academic2.american.edu/~jpnolan/stable/chap1.pdf – 13.05.2009.
  4. Fama, E. F. Parameter estimates for symmetric stable distributions [Text] / E. F. Fama, R. Roll // Journal of the American Statistical Association. – 1971. – № 66. – Р. 331-338.
  5. McCulloch, J. H. Simple consistent estimators of stable distribution parameters [Text] / J. H. McCulloch // Communications in Statistics. Computation and Simulation. – 1986. –№ 15 – Р. 1109–1136.
  6. Garcia, R. Estimation of stable distributions with indirect inference [Text] / R. Garcia, E. Renault, D. Veredas // Journal of Econometrics. – 2011. – № 161. – Р. 325-337.
  7. Hill, B. M. A simple general approach to inference about the tail of a distribution [Text] / B. M. Hill // Annals of Statistics. – 1975. – № 3. – Р. 1163-1174.
  8. Dufour, J-M. Exact inference and optimal invariant estimation for the tail coefficient of symmetric alpha-stable distributions [Text] / J-M. Dufour, J-R. Kurz-Kim // Journal of Empirical Finance. – 2010. – Vol. 17(2). – Р. 180-194.
  9. Nolan, J. P. Maximum likelihood estimation of stable parameters [Text] : sb. nauch. tr. / Levy Processes: Theory and Applications – Boston: Birkhauser. – 2001. – Р. 379-400.
  10. Koutrouvelis, I. A. Regression-type estimation of the parameters of stable laws [Text] / I. A. Koutrouvelis // Journal of the American Statistical Association. – 1980. – № 75. – Р. 918-928.
  11. Chenyao, D. Computing the probability density function of the stable paretian distribution [Text] / D. Chenyao, S. Mittnik, T. Doganoglu // Mathematical and Computer Modelling. – 1999. – № 29. – Р. 235-240.
  12. Шергин, В. Л. Оценивание индекса устойчивости альфа-устойчивых распределений методом дробных моментов [Текст] / В. Л. Шергин // Восточно-Европейский журнал передовых технологий. – 2013. – Т. 6, № 4 (66), - С. 25-30.
  13. Абрамовиц, М. Справочник по специальным функциям [Текст] / М. Абрамовиц, И. Стиган. – М.: Наука, 1979. – 832 с.
  14. Gnedenko, B. V., Kolmogorov, A. N. (1954). Limit distributions for sums of independent random variables. Addison-Wesley, 264. 2. Zolotarev, V. M. (1986). One-dimensional stable distributions. American Mathematical Society, 304.
  15. Nolan, J. P. (2009). Stable distributions models for heavy tailed data. Boston: Birkhauser Unfinished manuscript, Chapter 1. Available: http://academic2.american.edu/~jpnolan/stable/chap1.pdf.
  16. Fama, E., Roll, R. (1971). Parameter estimates for symmetric stable distributions. Journal of the American Statistical Association, 66, 331-338.
  17. McCulloch, J. H. (1986). Simple consistent estimators of stable distribution parameters. Communications in Statistics, Computation and Simulation, 15, 1109 – 1136.
  18. Garcia, R., Renault, E., Veredas, D. (2011). Estimation of stable distributions with indirect inference. Journal of Econometrics, 161, 325-337.
  19. Hill, B. M. (1975). A simple general approach to inference about the tail of a distribution, Annals of Statistics, 3, 1163-1174.
  20. Dufour, J-M., Kurz-Kim J-R. (2010). Exact inference and optimal invariant estimation for the tail coefficient of symmetric alpha-stable distributions. Journal of Empirical Finance, 17 (2), 180-194.
  21. Nolan, J. P. (2001). Maximum likelihood estimation of stable parameters. In O. E. Barndorff-Nielsen, T. Mikosch, and S. I. Resnick (Eds.), Levy Processes: Theory and Applications, Boston: Birkhauser, 379-400.
  22. Koutrouvelis, I. A. (1980). Regression-type estimation of the parameters of stable laws, Journal of the American Statistical Association, 75, 918-928.
  23. Chenyao, D., Mittnik, S., Doganoglu, T. (1999). Computing the probability density function of the stable paretian distribution, Mathematical and Computer Modelling, 29, 235-240.
  24. Shergin, V. L. (2013). Estimation of the stability factor of alpha-stable laws using fractional moments method, Eastern-European Journal of Enterprise Technologies, 6, 25-30.
  25. Abramowitz, M., Stegun, I. (1972). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover, 832.

Published

2014-02-12

How to Cite

Шергин, В. Л. (2014). Approximation an estimate of the ss-distributions stability factor. Eastern-European Journal of Enterprise Technologies, 1(4(67), 34–38. https://doi.org/10.15587/1729-4061.2014.20245

Issue

Section

Mathematics and Cybernetics - applied aspects