Апроксимація оцінки індекса стійкості SS-розподілів
DOI:
https://doi.org/10.15587/1729-4061.2014.20245Ключові слова:
стійки розподіли, оцінювання індексу стійкості, дрібні моменти, асимптотична дисперсія оцінокАнотація
Розглядається задача апроксимації оцінки индекса стійкості альфа-стійких розподілів, яка грунтується на застосуванні метода дрібних моментів. Отримано дробово-лінійну функію, яка наближує точну оцінку з необхідною точністю. Уточнено оцінку асимптотичної дисперсії оцінюваного індексу. Проведено чисельне моделювання, яке підтвердило отримані результати.
Посилання
- Гнеденко, Б. В. Пpедельные pаспpеделения для сумм независимых случайных величин [Текст] / Б. В. Гнеденко, А. Н. Колмогоpов – М.–Л.: ГИТТЛ - 1949. –264 с.
- Золотарев, В. М. Одномерные устойчивые распределения [Текст] / В. М. Золотарев – М., Наука, 1983. – 304 с.
- Nolan, J. P. Stable distributions - models for heavy tailed data [Electronic resource] / Boston: Birkhauser Unfinished manuscript, Chapter 1. – Available: http://academic2.american.edu/~jpnolan/stable/chap1.pdf – 13.05.2009.
- Fama, E. F. Parameter estimates for symmetric stable distributions [Text] / E. F. Fama, R. Roll // Journal of the American Statistical Association. – 1971. – № 66. – Р. 331-338.
- McCulloch, J. H. Simple consistent estimators of stable distribution parameters [Text] / J. H. McCulloch // Communications in Statistics. Computation and Simulation. – 1986. –№ 15 – Р. 1109–1136.
- Garcia, R. Estimation of stable distributions with indirect inference [Text] / R. Garcia, E. Renault, D. Veredas // Journal of Econometrics. – 2011. – № 161. – Р. 325-337.
- Hill, B. M. A simple general approach to inference about the tail of a distribution [Text] / B. M. Hill // Annals of Statistics. – 1975. – № 3. – Р. 1163-1174.
- Dufour, J-M. Exact inference and optimal invariant estimation for the tail coefficient of symmetric alpha-stable distributions [Text] / J-M. Dufour, J-R. Kurz-Kim // Journal of Empirical Finance. – 2010. – Vol. 17(2). – Р. 180-194.
- Nolan, J. P. Maximum likelihood estimation of stable parameters [Text] : sb. nauch. tr. / Levy Processes: Theory and Applications – Boston: Birkhauser. – 2001. – Р. 379-400.
- Koutrouvelis, I. A. Regression-type estimation of the parameters of stable laws [Text] / I. A. Koutrouvelis // Journal of the American Statistical Association. – 1980. – № 75. – Р. 918-928.
- Chenyao, D. Computing the probability density function of the stable paretian distribution [Text] / D. Chenyao, S. Mittnik, T. Doganoglu // Mathematical and Computer Modelling. – 1999. – № 29. – Р. 235-240.
- Шергин, В. Л. Оценивание индекса устойчивости альфа-устойчивых распределений методом дробных моментов [Текст] / В. Л. Шергин // Восточно-Европейский журнал передовых технологий. – 2013. – Т. 6, № 4 (66), - С. 25-30.
- Абрамовиц, М. Справочник по специальным функциям [Текст] / М. Абрамовиц, И. Стиган. – М.: Наука, 1979. – 832 с.
- Gnedenko, B. V., Kolmogorov, A. N. (1954). Limit distributions for sums of independent random variables. Addison-Wesley, 264. 2. Zolotarev, V. M. (1986). One-dimensional stable distributions. American Mathematical Society, 304.
- Nolan, J. P. (2009). Stable distributions models for heavy tailed data. Boston: Birkhauser Unfinished manuscript, Chapter 1. Available: http://academic2.american.edu/~jpnolan/stable/chap1.pdf.
- Fama, E., Roll, R. (1971). Parameter estimates for symmetric stable distributions. Journal of the American Statistical Association, 66, 331-338.
- McCulloch, J. H. (1986). Simple consistent estimators of stable distribution parameters. Communications in Statistics, Computation and Simulation, 15, 1109 – 1136.
- Garcia, R., Renault, E., Veredas, D. (2011). Estimation of stable distributions with indirect inference. Journal of Econometrics, 161, 325-337.
- Hill, B. M. (1975). A simple general approach to inference about the tail of a distribution, Annals of Statistics, 3, 1163-1174.
- Dufour, J-M., Kurz-Kim J-R. (2010). Exact inference and optimal invariant estimation for the tail coefficient of symmetric alpha-stable distributions. Journal of Empirical Finance, 17 (2), 180-194.
- Nolan, J. P. (2001). Maximum likelihood estimation of stable parameters. In O. E. Barndorff-Nielsen, T. Mikosch, and S. I. Resnick (Eds.), Levy Processes: Theory and Applications, Boston: Birkhauser, 379-400.
- Koutrouvelis, I. A. (1980). Regression-type estimation of the parameters of stable laws, Journal of the American Statistical Association, 75, 918-928.
- Chenyao, D., Mittnik, S., Doganoglu, T. (1999). Computing the probability density function of the stable paretian distribution, Mathematical and Computer Modelling, 29, 235-240.
- Shergin, V. L. (2013). Estimation of the stability factor of alpha-stable laws using fractional moments method, Eastern-European Journal of Enterprise Technologies, 6, 25-30.
- Abramowitz, M., Stegun, I. (1972). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover, 832.
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2014 Вадим Леонидович Шергин
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Закріплення та умови передачі авторських прав (ідентифікація авторства) здійснюється у Ліцензійному договорі. Зокрема, автори залишають за собою право на авторство свого рукопису та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons CC BY. При цьому вони мають право укладати самостійно додаткові угоди, що стосуються неексклюзивного поширення роботи у тому вигляді, в якому вона була опублікована цим журналом, але за умови збереження посилання на першу публікацію статті в цьому журналі.
Ліцензійний договір – це документ, в якому автор гарантує, що володіє усіма авторськими правами на твір (рукопис, статтю, тощо).
Автори, підписуючи Ліцензійний договір з ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР», мають усі права на подальше використання свого твору за умови посилання на наше видання, в якому твір опублікований. Відповідно до умов Ліцензійного договору, Видавець ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР» не забирає ваші авторські права та отримує від авторів дозвіл на використання та розповсюдження публікації через світові наукові ресурси (власні електронні ресурси, наукометричні бази даних, репозитарії, бібліотеки тощо).
За відсутності підписаного Ліцензійного договору або за відсутністю вказаних в цьому договорі ідентифікаторів, що дають змогу ідентифікувати особу автора, редакція не має права працювати з рукописом.
Важливо пам’ятати, що існує і інший тип угоди між авторами та видавцями – коли авторські права передаються від авторів до видавця. В такому разі автори втрачають права власності на свій твір та не можуть його використовувати в будь-який спосіб.