Improvement of a scraper heat exchanger for pre-heating plant-based raw materials before concentration
DOI:
https://doi.org/10.15587/1729-4061.2020.202501Keywords:
heating, scraper heat exchanger, cutting blade, heat removal, flexible film resistive electric heater of the radiating type.Abstract
When heating liquid and paste-type products, enterprises in the food industry commonly use scraper heat exchangers, which, given their high heat treatment intensity, make it possible to retain the original properties of the treated raw materials. Most heat exchangers demonstrate an unstable stabilizing effect: the vapor pressure ‒ the temperature that leads to damage to raw materials, under conditions of significant energy- and metal capacity. It is possible to eliminate these drawbacks by using a temperature-stable flexible film resistive electric heater of the radiating type as a heater in an improved scraper heat exchanger. We have proposed applying a hinged blade with a cutting edge (with a reflective heating surface) as a stirring element of the heat exchanger to obtain the uniform distribution of a product layer thickness at the working surface and to additionally heat by the blade's reflective surface. The heat exchanger can be supplemented with a cooling shell with ring channels to pass the refrigerant, which is placed on the outer surface of the non-thermally insulated flexible electric heater. Such a solution provides the possibility of cooling to −15 °C and it simultaneously serves the additional air thermal insulation in the absence of the carrier in it.
We have determined the uniformity of heat flow distribution over the heating surface of the model design of the improved unit (60.3...60.5 °C) and at the reflective surface of the hinged blade with a cutting edge (60.0...60.3 °C). The total thickness of a liquid layer has been established depending on the shaft rotation frequency of the proposed hinged blade with a cutting edge: at 50 min–1 – 1–2.65 mm, at 350 min–1 –1.5 mm, compared with a standard hinge blade (a layer thickness is from 5.0 mm to 1.5 mm), in terms of product consumption W=50 l/h. The improved scraper heat exchanger is characterized by a 1.48-time decrease in the specific energy consumption (170.4 kJ/kg), used to heat a product volume unit, compared to the heater with a steam shell – 252.6 kJ/kg. The research result is the confirmed efficiency of using the improved scraper heat exchanger, as well as its proposed structural scheme
References
- Alabina, N. M., Drozdova, V. I., Volodz'ko, G. V. et. al. (2006). Plodoovoshchnye konservy profilakticheskogo naznacheniya. Pishchevaya promyshlennost', 11, 78–79.
- Habanova, M., Saraiva, J. A., Holovicova, M., Moreira, S. A., Fidalgo, L. G., Haban, M. et. al. (2019). Effect of berries/apple mixed juice consumption on the positive modulation of human lipid profile. Journal of Functional Foods, 60, 103417. doi: https://doi.org/10.1016/j.jff.2019.103417
- Huang, L., Bai, L., Zhang, X., Gong, S. (2019). Re-understanding the antecedents of functional foods purchase: Mediating effect of purchase attitude and moderating effect of food neophobia. Food Quality and Preference, 73, 266–275. doi: https://doi.org/10.1016/j.foodqual.2018.11.001
- Misra, N. N., Koubaa, M., Roohinejad, S., Juliano, P., Alpas, H., Inácio, R. S. et. al. (2017). Landmarks in the historical development of twenty first century food processing technologies. Food Research International, 97, 318–339. doi: https://doi.org/10.1016/j.foodres.2017.05.001
- Oliinyk, S., Samokhvalova, O., Zaparenko, A., Shidakova-Kamenyuka, E., Chekanov, M. (2016). Research into the impact of enzyme preparations on the processes of grain dough fermentation and bread quality. Eastern-European Journal of Enterprise Technologies, 3 (11 (81)), 46–53. doi: https://doi.org/10.15587/1729-4061.2016.70984
- Shydakova-Kameniuka, E., Novik, A., Zhukov, Y., Matsuk, Y., Zaparenko, A., Babich, P., Oliinyk, S. (2019). Estimation of technological properties of nut meals and their effect on the quality of emulsion for butter biscuits with liquid oils. Eastern-European Journal of Enterprise Technologies, 2 (11 (98)), 56–64. doi: https://doi.org/10.15587/1729-4061.2019.159983
- Skrebkovye teploobmenniki «Konterm». Available at: https://www.c-o-k.ru/library/instructions/alfa-laval/teploobmenniki/10319/28248.pdf
- Zagorulko, A., Zahorulko, A., Kasabova, K., Chervonyi, V., Omelchenko, O., Sabadash, S. et. al. (2018). Universal multifunctional device for heat and mass exchange processes during organic raw material processing. Eastern-European Journal of Enterprise Technologies, 6 (1 (96)), 47–54. doi: https://doi.org/10.15587/1729-4061.2018.148443
- Boesveldt, S., Bobowski, N., McCrickerd, K., Maître, I., Sulmont-Rossé, C., Forde, C. G. (2018). The changing role of the senses in food choice and food intake across the lifespan. Food Quality and Preference, 68, 80–89. doi: https://doi.org/10.1016/j.foodqual.2018.02.004
- Ahmed, J., Ramaswamy, H. S. (2006). Viscoelastic properties of sweet potato puree infant food. Journal of Food Engineering, 74 (3), 376–382. doi: https://doi.org/10.1016/j.jfoodeng.2005.03.010
- Zahorulko, A., Zagorulko, A., Fedak, N., Sabadash, S., Kazakov, D., Kolodnenko, V. (2019). Improving a vacuum-evaporator with enlarged heat exchange surface for making fruit and vegetable semi-finished products. Eastern-European Journal of Enterprise Technologies, 6 (11 (102)), 6–13. doi: https://doi.org/10.15587/1729-4061.2019.178764
- Zahorulko, A. M., Zahorulko, O. Ye. (2016). Pat. No. 108041 UA. Hnuchkyi plivkovyi rezystyvnyi elektronahrivach vyprominiuiuchoho typu. No. u201600827; declareted: 02.02.2016; published: 24.06.2016, Bul. No. 12.
- Cherevko, O., Mykhaylov, V., Zagorulko, A., Zahorulko, A. (2018). Improvement of a rotor film device for the production of highquality multicomponent natural pastes. Eastern-European Journal of Enterprise Technologies, 2 (11 (92)), 11–17. doi: https://doi.org/10.15587/1729-4061.2018.126400
- Kiptelaya, L., Zagorulko, A., Zagorulko, A. (2015). Improvement of equipment for manufacture of vegetable convenience foods. Eastern-European Journal of Enterprise Technologies, 2 (10 (74)), 4–8. doi: https://doi.org/10.15587/1729-4061.2015.39455
- Cherevko, A., Kiptelaya, L., Mikhaylov, V., Zagorulko, A., Zagorulko, A. (2015). Development of energy-efficient ir dryer for plant raw materials. Eastern-European Journal of Enterprise Technologies, 4 (8 (76)), 36–41. doi: https://doi.org/10.15587/1729-4061.2015.47777
- Cherevko, O., Mykhaylov, V., Zahorulko, A., Zahorulko, A., Borysova, A. (2018). Color characteristics of dried three-component fruit and berry pastes. Food Science and Technology, 12 (1). doi: https://doi.org/10.15673/fst.v12i1.840
- Qiu, J., Kloosterboer, K., Guo, Y., Boom, R. M., Schutyser, M. A. I. (2019). Conductive thin film drying kinetics relevant to drum drying. Journal of Food Engineering, 242, 68–75. doi: https://doi.org/10.1016/j.jfoodeng.2018.08.021
- Halder, A., Dhall, A., Datta, A. K., Black, D. G., Davidson, P. M., Li, J., Zivanovic, S. (2011). A user-friendly general-purpose predictive software package for food safety. Journal of Food Engineering, 104 (2), 173–185. doi: https://doi.org/10.1016/j.jfoodeng.2010.11.021
- Fayolle, F., Belhamri, R., Flick, D. (2013). Residence time distribution measurements and simulation of the flow pattern in a scraped surface heat exchanger during crystallisation of ice cream. Journal of Food Engineering, 116 (2), 390–397. doi: https://doi.org/10.1016/j.jfoodeng.2012.12.009
- Błasiak, P., Pietrowicz, S. (2017). An experimental study on the heat transfer performance in a batch scraped surface heat exchanger under a turbulent flow regime. International Journal of Heat and Mass Transfer, 107, 379–390. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.049
- Crespí-Llorens, D., Vicente, P., Viedma, A. (2018). Experimental study of heat transfer to non-Newtonian fluids inside a scraped surface heat exchanger using a generalization method. International Journal of Heat and Mass Transfer, 118, 75–87. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.115
- Imran, A., Rana, M. A., Siddiqui, A. M. (2017). Study of a Eyring–Powell Fluid in a Scraped Surface Heat Exchanger. International Journal of Applied and Computational Mathematics, 4 (1). doi: https://doi.org/10.1007/s40819-017-0436-z
- Martínez, D. S., Solano, J. P., Vicente, P. G., Viedma, A. (2019). Flow pattern analysis in a rotating scraped surface plate heat exchanger. Applied Thermal Engineering, 160, 113795. doi: https://doi.org/10.1016/j.applthermaleng.2019.113795
- Błasiak, P., Pietrowicz, S. (2019). A numerical study on heat transfer enhancement via mechanical aids. International Journal of Heat and Mass Transfer, 140, 203–215. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2019.05.116
- Acosta, C. A., Yanes, D., Bhalla, A., Guo, R., Finol, E. A., Frank, J. I. (2020). Numerical and experimental study of the glass-transition temperature of a non-Newtonian fluid in a dynamic scraped surface heat exchanger. International Journal of Heat and Mass Transfer, 152, 119525. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2020.119525
- Hernández-Parra, O. D., Plana-Fattori, A., Alvarez, G., Ndoye, F.-T., Benkhelifa, H., Flick, D. (2018). Modeling flow and heat transfer in a scraped surface heat exchanger during the production of sorbet. Journal of Food Engineering, 221, 54–69. doi: https://doi.org/10.1016/j.jfoodeng.2017.09.027
- Vakuum-vyparnaya ustanovka M3-2S-241AM. Available at: http://dagprodmash.ru/vakuum-vyparnaia_ustanovka_m3-2s-241am.html
- Cherevko, A., Mayak, O., Kostenko, S., Sardarov, A. (2019). Experimental and simulation modeling of the heat exchanche process while boiling vegetable juice. Prohresyvni tekhnika ta tekhnolohiyi kharchovykh vyrobnytstv restorannoho hospodarstva i torhivli, 1 (29), 75–85.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Kateryna Kasabova, Sergei Sabadash, Valentyna Mohutova, Vadym Volokh, Anatolii Poliakov, Tetiana Lazarieva, Olga Blahyi, Oleg Radchuk, Vladyslav Lavruk
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.