A study of new local heating and air conditioning schemes based on the Maisotsenko cycle

Authors

  • Oleh Stupak Institute of Engineering Thermophysics of National academy of sciences of Ukraine Mariyi Kapnist str., 2а, Kyiv, Ukraine, 03057, Ukraine https://orcid.org/0000-0002-8283-3115
  • Artem Khalatov Institute of Engineering Thermophysics of National academy of sciences of Ukraine Mariyi Kapnist str., 2а, Kyiv, Ukraine, 03057 National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” Peremohy ave., 37, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0002-7659-4234
  • Tetiana Donyk Institute of Engineering Thermophysics of National academy of sciences of Ukraine Mariyi Kapnist str., 2а, Kyiv, Ukraine, 03057 National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” Peremohy ave., 37, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0002-1476-5560
  • Oksana Shikhabutinova Institute of Engineering Thermophysics of National academy of sciences of Ukraine Mariyi Kapnist str., 2а, Kyiv, Ukraine, 03057 National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” Peremohy ave., 37, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0001-6184-1258

DOI:

https://doi.org/10.15587/1729-4061.2020.205047

Keywords:

heat supply, air heating, cooling, heat pump, Rankine cycle, Maisotsenko cycle

Abstract

Significant consumption of energy resources in the production of heat in the winter season and air conditioning in the summer season is the main problem of municipal heat-and-power engineering. Therefore, local energy-efficient heating systems and climatic heating and cooling systems based on renewable energy sources are becoming increasingly important. The heat pumps, based on the Rankine cycle, which use the energy of atmospheric air, soil, and wastewater, as well as air conditioning systems, based on the Maisotsenko cycle, using the psychrometric energy of the environment, have become widespread in recent years. Theoretical analysis shows that a combination of these cycles makes it possible to achieve high energy efficiency and create fundamentally new systems of heating and cooling the living spaces. This paper presents the results of a comparative experimental study of two heat supply and cooling schemes based on a combination of the Maisotsenko and Rankine cycles. An experimental bench of the combined cycle with thermal power of 28 kW with the power of the heat pump of 3 kW was developed for the experimental study. A serial M-cycle heat-and-mass exchanger manufactured by Coolerado Corporation, USA, was used in the design of the bench. Studies have shown high energy efficiency of both heat supply schemes which was determined by the coefficient of performance (COP): 6.3–7.21 for the first scheme and 7.44–9.73 for the second one. When conditioning the room air, the Rankine heat pump was not used, so the energy was consumed solely by the fan to pump air through the M-cycle heat-and-mass exchanger and the air conditioning system. In this case, the coefficient of performance was 10.49–16.32

Author Biographies

Oleh Stupak, Institute of Engineering Thermophysics of National academy of sciences of Ukraine Mariyi Kapnist str., 2а, Kyiv, Ukraine, 03057

Postgraduate Student, Researcher

Department of High-Temperature Thermogasdynamics

Artem Khalatov, Institute of Engineering Thermophysics of National academy of sciences of Ukraine Mariyi Kapnist str., 2а, Kyiv, Ukraine, 03057 National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” Peremohy ave., 37, Kyiv, Ukraine, 03056

Doctor of Technical Sciences, Professor, Academician of NAS of Ukraine, Head of Department

Department of High-Temperature Thermogasdynamics

Head of Department

Department of Power Systems Physics IPT

Tetiana Donyk, Institute of Engineering Thermophysics of National academy of sciences of Ukraine Mariyi Kapnist str., 2а, Kyiv, Ukraine, 03057 National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” Peremohy ave., 37, Kyiv, Ukraine, 03056

PhD, Senior Researcher

Department of High-Temperature Thermogasdynamics

Senior Engineer

Department of Power Systems Physics IPT

Oksana Shikhabutinova, Institute of Engineering Thermophysics of National academy of sciences of Ukraine Mariyi Kapnist str., 2а, Kyiv, Ukraine, 03057 National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” Peremohy ave., 37, Kyiv, Ukraine, 03056

PhD, Senior Researcher

Department of High-Temperature Thermogasdynamics

Senior Engineer

Department of Power Systems Physics IPT

References

  1. Svistunov, V. M., Pushnyakov, N. K. (2001). Otoplenie, ventilyatsiya i konditsionirovanie vozdukha obektov agropromyshlennogo kompleksa i zhilischno-kommunal'nogo khozyaystva. Sankt-Peterburg: Politekhnika, 423.
  2. Krasnov, Yu. S. (2006). Sistemy ventilyatsii i konditsionirovaniya. Rekomendatsii po proektirovaniyu dlya proizvodstvennykh i obschestvennykh zdaniy. Moskva: Tekhnosfera, 288.
  3. Kolesnichenko, N. V., Konstantinov, G. E., Dmitrenko, M. A. (2011). Feasibility assessment of using heat pumps in Ukraine. Promyshlennaya teplotekhnika, 33 (5), 67–73.
  4. Bezrodnyi, M. K., Pukhovyi, I. I., Kutra, D. S. (2013). Teplovi nasosy ta yikh vykorystannia. Kyiv: NTUU «KPI», 312.
  5. Tkachenko, S. Y.‚ Ostapenko, O. P. (2009). Parokompresiyni teplonasosni ustanovky v systemakh teplopostachannia. Vinnytsia: VNTU, 175.
  6. Xing, C., ding, Q., Jiang, A., Cheng, W., Zhou, D. (2015). Dynamic Operational Optimization of Air Source Heat Pump Heating System with the Consideration of Energy Saving. IFAC-PapersOnLine, 48 (8), 740–745. doi: https://doi.org/10.1016/j.ifacol.2015.09.057
  7. Huang, S., Zuo, W., Lu, H., Liang, C., Zhang, X. (2019). Performance comparison of a heating tower heat pump and an air-source heat pump: A comprehensive modeling and simulation study. Energy Conversion and Management, 180, 1039–1054. doi: https://doi.org/10.1016/j.enconman.2018.11.050
  8. Hong, W., Hao, J., Wang, J., Teng, D., Jin, X. (2019). Performance analysis of combined cooling heating and power (CCHP) exhaust waste heat coupled air source heat pump system. Building Simulation, 12 (4), 563–571. doi: https://doi.org/10.1007/s12273-019-0520-x
  9. Khaled, M., Ramadan, M. (2016). Heating fresh air by hot exhaust air of HVAC systems. Case Studies in Thermal Engineering, 8, 398–402. doi: https://doi.org/10.1016/j.csite.2016.10.004
  10. Khalatov, A., Karp, I., Isakov, B. (2011). Prospects of the maisotsenko thermodynamic cycle application in Ukraine. International Journal of Energy for a Clean Environment, 12 (2-4), 141–157. doi: https://doi.org/10.1615/interjenercleanenv.2012005916
  11. Zhan, C., Zhao, X., Smith, S., Riffat, S. B. (2011). Numerical study of a M-cycle cross-flow heat exchanger for indirect evaporative cooling. Building and Environment, 46 (3), 657–668. doi: https://doi.org/10.1016/j.buildenv.2010.09.011
  12. Caliskan, H., Hepbasli, A., Dincer, I., Maisotsenko, V. (2011). Thermodynamic performance assessment of a novel air cooling cycle: Maisotsenko cycle. International Journal of Refrigeration, 34 (4), 980–990. doi: https://doi.org/10.1016/j.ijrefrig.2011.02.001
  13. Maisotsenko, V., Gillan, L. E., Heaton, T. L., Gillan, A. D. (2003). US Pat. No. US6581402B2. Method and plate apparatus for dew point evaporative cooler. No. 09/966,928; declareted: 27.09.2001; published: 24.06.2003. Available at: https://patents.google.com/patent/US6581402B2/en
  14. Kozubal, E., Slayzak, S. (2010). Technical Report: Coolerado 5 Ton RTU Performance – Western Cooling Challenge Results. National Renewable Energy Laboratory. Colorado. Available at: https://www.nrel.gov/docs/fy11osti/46524.pdf
  15. Caliskan, H., Hepbasli, A., Dincer, I., Maisotsenko, V. (2011). Thermodynamic performance assessment of a novel air cooling cycle: Maisotsenko cycle. International Journal of Refrigeration, 34 (4), 980–990. doi: https://doi.org/10.1016/j.ijrefrig.2011.02.001
  16. Mahmood, M. H., Sultan, M., Miyazaki, T., Koyama, S., Maisotsenko, V. S. (2016). Overview of the Maisotsenko cycle – A way towards dew point evaporative cooling. Renewable and Sustainable Energy Reviews, 66, 537–555. doi: https://doi.org/10.1016/j.rser.2016.08.022
  17. Kashif, M., Miyazaki, T., Sultan, M., Khan, Z. M., Mahmood, M. H. (2017). Investigation of Maisotsenko Cycle (M-cycle) Air-Conditioning System for Multan(Pakistan). 2017 International Conference on Energy Conservation and Efficiency (ICECE). doi: https://doi.org/10.1109/ece.2017.8248823
  18. Rogdakis, E. D., Koronaki, I. P., Tertipis, D. N. (2014). Experimental and computational evaluation of a Maisotsenko evaporative cooler at Greek climate. Energy and Buildings, 70, 497–506. doi: https://doi.org/10.1016/j.enbuild.2013.10.013
  19. Terekhov, V. I., Gorbachev, M. V., Khafaji, H. Q. (2016). Evaporative cooling of air in an adiabatic channel with partially wetted zones. Thermophysics and Aeromechanics, 23 (2), 221–230. doi: https://doi.org/10.1134/s0869864316020086
  20. Khalatov, A. A., Stupak, O. S., Hryshchuk, M. S., Halaka, O. I., Zghurovskyi, M. Z., Ilchenko, M. Yu. et. al. (2018). Pat. No. 128732 UA. Systema povitrianoho opalennia. No. u201802342; declareted: 07.03.2018; published: 10.10.2018, Bul. No. 19.
  21. Khalatov, A. A., Stupak, O. S., Grishuk, M. S., Galaka, O. I. (2018). Novel combined thermodynamic cycle. Reports of the National Academy of Sciences of Ukraine, (2), 58–64. doi: https://doi.org/10.15407/dopovidi2018.02.058
  22. Khalatov, A. A., Stupak, O. S., Hryshchuk, M. S., Halaka, O. I. (2016). Pat. No. 111096 UA. Systema povitrianoho opalennia. No. u201606295; declareted: 09.06.2016; published: 25.10.2016, Bul. No. 20.
  23. Khalatov, A. A., Stupak, O. S., Hryshchuk, M. S., Halaka, O. I. (2016). Pat. No. 129896 UA. Systema povitrianoho opalennia. No. a201609765; zaiavl. 22.09.2016; opubl. 26.11.2018, Bul. No. 22.
  24. Khalatov, A. A., Stupak, O. S., Hryshchuk, M. S., Halaka, O. I. (2017). Pat. No. 119186 UA. Systema povitrianoho opalennia. No. a201706465; declareted: 23.06.2017; published: 10.05.2019, Bul. No. 9.
  25. DBN V.2.5-67:2013. Opalennia, ventyliatsiya ta kondytsiuvannia (2013). Kyiv, 37–43.

Downloads

Published

2020-06-30

How to Cite

Stupak, O., Khalatov, A., Donyk, T., & Shikhabutinova, O. (2020). A study of new local heating and air conditioning schemes based on the Maisotsenko cycle. Eastern-European Journal of Enterprise Technologies, 3(8 (105), 6–14. https://doi.org/10.15587/1729-4061.2020.205047

Issue

Section

Energy-saving technologies and equipment