A study of new local heating and air conditioning schemes based on the Maisotsenko cycle
DOI:
https://doi.org/10.15587/1729-4061.2020.205047Keywords:
heat supply, air heating, cooling, heat pump, Rankine cycle, Maisotsenko cycleAbstract
Significant consumption of energy resources in the production of heat in the winter season and air conditioning in the summer season is the main problem of municipal heat-and-power engineering. Therefore, local energy-efficient heating systems and climatic heating and cooling systems based on renewable energy sources are becoming increasingly important. The heat pumps, based on the Rankine cycle, which use the energy of atmospheric air, soil, and wastewater, as well as air conditioning systems, based on the Maisotsenko cycle, using the psychrometric energy of the environment, have become widespread in recent years. Theoretical analysis shows that a combination of these cycles makes it possible to achieve high energy efficiency and create fundamentally new systems of heating and cooling the living spaces. This paper presents the results of a comparative experimental study of two heat supply and cooling schemes based on a combination of the Maisotsenko and Rankine cycles. An experimental bench of the combined cycle with thermal power of 28 kW with the power of the heat pump of 3 kW was developed for the experimental study. A serial M-cycle heat-and-mass exchanger manufactured by Coolerado Corporation, USA, was used in the design of the bench. Studies have shown high energy efficiency of both heat supply schemes which was determined by the coefficient of performance (COP): 6.3–7.21 for the first scheme and 7.44–9.73 for the second one. When conditioning the room air, the Rankine heat pump was not used, so the energy was consumed solely by the fan to pump air through the M-cycle heat-and-mass exchanger and the air conditioning system. In this case, the coefficient of performance was 10.49–16.32References
- Svistunov, V. M., Pushnyakov, N. K. (2001). Otoplenie, ventilyatsiya i konditsionirovanie vozdukha obektov agropromyshlennogo kompleksa i zhilischno-kommunal'nogo khozyaystva. Sankt-Peterburg: Politekhnika, 423.
- Krasnov, Yu. S. (2006). Sistemy ventilyatsii i konditsionirovaniya. Rekomendatsii po proektirovaniyu dlya proizvodstvennykh i obschestvennykh zdaniy. Moskva: Tekhnosfera, 288.
- Kolesnichenko, N. V., Konstantinov, G. E., Dmitrenko, M. A. (2011). Feasibility assessment of using heat pumps in Ukraine. Promyshlennaya teplotekhnika, 33 (5), 67–73.
- Bezrodnyi, M. K., Pukhovyi, I. I., Kutra, D. S. (2013). Teplovi nasosy ta yikh vykorystannia. Kyiv: NTUU «KPI», 312.
- Tkachenko, S. Y.‚ Ostapenko, O. P. (2009). Parokompresiyni teplonasosni ustanovky v systemakh teplopostachannia. Vinnytsia: VNTU, 175.
- Xing, C., ding, Q., Jiang, A., Cheng, W., Zhou, D. (2015). Dynamic Operational Optimization of Air Source Heat Pump Heating System with the Consideration of Energy Saving. IFAC-PapersOnLine, 48 (8), 740–745. doi: https://doi.org/10.1016/j.ifacol.2015.09.057
- Huang, S., Zuo, W., Lu, H., Liang, C., Zhang, X. (2019). Performance comparison of a heating tower heat pump and an air-source heat pump: A comprehensive modeling and simulation study. Energy Conversion and Management, 180, 1039–1054. doi: https://doi.org/10.1016/j.enconman.2018.11.050
- Hong, W., Hao, J., Wang, J., Teng, D., Jin, X. (2019). Performance analysis of combined cooling heating and power (CCHP) exhaust waste heat coupled air source heat pump system. Building Simulation, 12 (4), 563–571. doi: https://doi.org/10.1007/s12273-019-0520-x
- Khaled, M., Ramadan, M. (2016). Heating fresh air by hot exhaust air of HVAC systems. Case Studies in Thermal Engineering, 8, 398–402. doi: https://doi.org/10.1016/j.csite.2016.10.004
- Khalatov, A., Karp, I., Isakov, B. (2011). Prospects of the maisotsenko thermodynamic cycle application in Ukraine. International Journal of Energy for a Clean Environment, 12 (2-4), 141–157. doi: https://doi.org/10.1615/interjenercleanenv.2012005916
- Zhan, C., Zhao, X., Smith, S., Riffat, S. B. (2011). Numerical study of a M-cycle cross-flow heat exchanger for indirect evaporative cooling. Building and Environment, 46 (3), 657–668. doi: https://doi.org/10.1016/j.buildenv.2010.09.011
- Caliskan, H., Hepbasli, A., Dincer, I., Maisotsenko, V. (2011). Thermodynamic performance assessment of a novel air cooling cycle: Maisotsenko cycle. International Journal of Refrigeration, 34 (4), 980–990. doi: https://doi.org/10.1016/j.ijrefrig.2011.02.001
- Maisotsenko, V., Gillan, L. E., Heaton, T. L., Gillan, A. D. (2003). US Pat. No. US6581402B2. Method and plate apparatus for dew point evaporative cooler. No. 09/966,928; declareted: 27.09.2001; published: 24.06.2003. Available at: https://patents.google.com/patent/US6581402B2/en
- Kozubal, E., Slayzak, S. (2010). Technical Report: Coolerado 5 Ton RTU Performance – Western Cooling Challenge Results. National Renewable Energy Laboratory. Colorado. Available at: https://www.nrel.gov/docs/fy11osti/46524.pdf
- Caliskan, H., Hepbasli, A., Dincer, I., Maisotsenko, V. (2011). Thermodynamic performance assessment of a novel air cooling cycle: Maisotsenko cycle. International Journal of Refrigeration, 34 (4), 980–990. doi: https://doi.org/10.1016/j.ijrefrig.2011.02.001
- Mahmood, M. H., Sultan, M., Miyazaki, T., Koyama, S., Maisotsenko, V. S. (2016). Overview of the Maisotsenko cycle – A way towards dew point evaporative cooling. Renewable and Sustainable Energy Reviews, 66, 537–555. doi: https://doi.org/10.1016/j.rser.2016.08.022
- Kashif, M., Miyazaki, T., Sultan, M., Khan, Z. M., Mahmood, M. H. (2017). Investigation of Maisotsenko Cycle (M-cycle) Air-Conditioning System for Multan(Pakistan). 2017 International Conference on Energy Conservation and Efficiency (ICECE). doi: https://doi.org/10.1109/ece.2017.8248823
- Rogdakis, E. D., Koronaki, I. P., Tertipis, D. N. (2014). Experimental and computational evaluation of a Maisotsenko evaporative cooler at Greek climate. Energy and Buildings, 70, 497–506. doi: https://doi.org/10.1016/j.enbuild.2013.10.013
- Terekhov, V. I., Gorbachev, M. V., Khafaji, H. Q. (2016). Evaporative cooling of air in an adiabatic channel with partially wetted zones. Thermophysics and Aeromechanics, 23 (2), 221–230. doi: https://doi.org/10.1134/s0869864316020086
- Khalatov, A. A., Stupak, O. S., Hryshchuk, M. S., Halaka, O. I., Zghurovskyi, M. Z., Ilchenko, M. Yu. et. al. (2018). Pat. No. 128732 UA. Systema povitrianoho opalennia. No. u201802342; declareted: 07.03.2018; published: 10.10.2018, Bul. No. 19.
- Khalatov, A. A., Stupak, O. S., Grishuk, M. S., Galaka, O. I. (2018). Novel combined thermodynamic cycle. Reports of the National Academy of Sciences of Ukraine, (2), 58–64. doi: https://doi.org/10.15407/dopovidi2018.02.058
- Khalatov, A. A., Stupak, O. S., Hryshchuk, M. S., Halaka, O. I. (2016). Pat. No. 111096 UA. Systema povitrianoho opalennia. No. u201606295; declareted: 09.06.2016; published: 25.10.2016, Bul. No. 20.
- Khalatov, A. A., Stupak, O. S., Hryshchuk, M. S., Halaka, O. I. (2016). Pat. No. 129896 UA. Systema povitrianoho opalennia. No. a201609765; zaiavl. 22.09.2016; opubl. 26.11.2018, Bul. No. 22.
- Khalatov, A. A., Stupak, O. S., Hryshchuk, M. S., Halaka, O. I. (2017). Pat. No. 119186 UA. Systema povitrianoho opalennia. No. a201706465; declareted: 23.06.2017; published: 10.05.2019, Bul. No. 9.
- DBN V.2.5-67:2013. Opalennia, ventyliatsiya ta kondytsiuvannia (2013). Kyiv, 37–43.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Oleh Stupak, Artem Khalatov, Tetiana Donyk, Oksana Shikhabutinova
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.