Simulating the traction electric drive operation of a trolleybus equipped with mixed excitation motors and a DC-DC converter

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.205288

Keywords:

trolleybus traction electric drive, motor of mixed excitation, pulse converter, imitation modeling

Abstract

Switching to the new type of a traction drive, from direct to alternating current, cannot be performed instantly in public transportation. The reason is the large fleet of vehicles and associated costs. In most countries in Europe and Asia, this process takes years.

Therefore, the fleet of trolleybuses develops in two directions simultaneously. The first is the purchase of new trolleybuses, that is, the renewal of fleet with modern machines with an alternating current traction motor. The second is the overhaul and modernization of "outdated" machines, in order to improve their performance. Most "obsolete" trolleybuses are equipped with direct current traction motors of serial or mixed excitation. It is possible to achieve substantial energy savings and to improve the characteristics of the traction electric drive with such engines by using a pulse control system and by optimizing control algorithms.

The goal of this study is to increase energy efficiency and to improve the characteristics of the trolleybus traction electric drive, equipped with a direct current motor of mixed excitation. This is accomplished by improving this drive's control system based on the pulse control system via DC-DC.

The feasibility of the tractive electric drive has been tested through imitation and physical modeling. A mathematical model of the DC motor with mixed excitation has also been improved. A special feature of this model is taking into consideration the saturation of the elements of a magnetic wire of the traction motor based on the preliminary performed calculations of a magnetic field using a finite element method. By combining these components, the improved mathematical model of the entire trolleybus electric drive has been built.

The operation of the trolleybus electric drive under a start mode has been simulated. The results have confirmed the increase in the energy efficiency of the traction electric drive by reducing the loss for excitation. The comparison has proven that the losses of energy decreased from 0.587 MJ (0.163 kWh) to 0.531 (0.1475 kWh) MJ, by 9.54 %.

Author Biographies

Viktor Kharchenko, O. M. Beketov National University of Urban Economy in Kharkiv Marshala Bazhanova str., 17, Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Professor

Department of Power Supply Systems and Power Consumption of Cities

Ivan Kostenko, O. M. Beketov National University of Urban Economy in Kharkiv Marshala Bazhanova str., 17, Kharkiv, Ukraine, 61002

Assistant

Department of Electrical Transport

Borys Liubarskyi, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Professor

Department of Electrical Transport and Construction of Diesel Locomotives

Viktor Shaida, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of Electrical Machines

Maksym Kuravskyi, Ivan Kozhedub Kharkiv National Air Force University Sumska str., 77/79, Kharkiv, Ukraine, 61023

Researcher

Faculty of Anti-Aircraft Missile Troops

Оleksandr Petrenko, O. M. Beketov National University of Urban Economy in Kharkiv Marshala Bazhanova str., 17, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of Electrical Transport

References

  1. Hutyria, S., Yahlinskyi, V., Chanchin, A., Khomiak, Y., Popov, V. (2020). Evolution of trolley-bus: directions, indicators, trends. Diagnostyka, 21 (1), 11–26. doi: https://doi.org/10.29354/diag/116080
  2. Grijalva, E. R., López Martínez, J. M. (2019). Analysis of the Reduction of CO2 Emissions in Urban Environments by Replacing Conventional City Buses by Electric Bus Fleets: Spain Case Study. Energies, 12 (3), 525. doi: https://doi.org/10.3390/en12030525
  3. Tica, S., Filipovic, S., Zivanovic, P., Bajcetic, S. (2011). Development of Trolleybus Passenger Transport Subsystems in Terms of Sustainable Development and Quality of Life in Cities. International Journal for Traffic and Transport Engineering, 1 (4), 196–205.
  4. Stepanov, P. (2019). Characteristics of construction and operation of trolleybus systems in the world. Prace Komisji Geografii Komunikacji PTG, 22 (3), 64–72. doi: https://doi.org/10.4467/2543859xpkg.19.018.11284
  5. Grzelec, K., Birr, K. (2016). Development of trolleybus public transport in gdynia as part of a sustainable mobility strategy. Scientific Journal of Silesian University of Technology. Series Transport, 92, 53–63. doi: https://doi.org/10.20858/sjsutst.2016.92.6
  6. Lyagushkin, A., Yankivskiy, D., Vel'mozhko, A. (2019). Na kakih trolleybusah ezdyat ukraintsy. Passazhirskiy Transport. Available at: https://traffic.od.ua/blogs/antonlyagushkin/1217504
  7. Zavada, J., Blašković Zavada, J., Miloš, K. (2012). Conditions for Implementing Trolleybuses in Public Urban Transport. PROMET - Traffic&Transportation, 22 (6), 467–474. doi: https://doi.org/10.7307/ptt.v22i6.212
  8. Bogodistiy, P. (2016). Sovremenniy trolleybus: opisaniya ustroystva i printsipa raboty. Nauka i Tehnika. Available at: https://naukatehnika.com/sovremennyij-trollejbus.html
  9. Karpliuk, L., Panchenko, B. (2012). Osoblyvosti zastosuvannia chastotnokerovanoho asynkhronnoho elektropryvodu dlia tiahovykh mekhanizmiv. Visnyk Natsionalnoho universytetu «Lvivska politekhnika»: Elektroenerhetychni ta elektromekhanichni systemy, 736, 49–53. Available at: http://ena.lp.edu.ua:8080/bitstream/ntb/15815/1/9-Karplyuk-49-53.pdf
  10. Sharyakov, V. (2014). Dvadtsat' let vnedreniya asinhronnogo elektroprivoda na gorodskom elektrotransporte. Control Engineering Rossiya, 3 (51), 67–69. Available at: https://controleng.ru/wp-content/uploads/5167.pdf
  11. Bartłomiejczyk, M., Połom, M., Jakimovska, K. (2013). Application of principal component and hierarchical cluster analysis in classifying defects of trolleybuses. Przeglad Elektrotechniczny, 89 (8), 48–51. Available at: http://www.pe.org.pl/articles/2013/8/10.pdf
  12. Lyagushkin, A., YAnkivskiy, D. (2020). Kak v proshlom godu obnovlyalis' trolleybusnye parki Ukrainy. Odesskiy Kur'er. Available at: https://uc.od.ua/news/traffic/1222426
  13. Lyagushkin, A., Vel'mozhko, A. (2019). Proekt EIB "Gorodskoy obshchestvenniy transport v Ukraine": kakih uspehov dobilis' goroda. Passazhirskiy Transport. Available at: https://traffic.od.ua/blogs/antonlyagushkin/1220877
  14. Mwambeleko, J. J., Kulworawanichpong, T., Greyson, K. A. (2015). Tram and trolleybus net traction energy consumption comparison. 2015 18th International Conference on Electrical Machines and Systems (ICEMS). doi: https://doi.org/10.1109/icems.2015.7385399
  15. Cherny, M., Kachimov, V. (2009). Implementation of energy efficient equipment and technologies at the rolling stock city electric Ukraine. Municipal economy of cities, 88, 263–266. Available at: https://khg.kname.edu.ua/index.php/khg/article/view/1604/1596
  16. Nicholson, T. J. (2008). DC & AC traction motors. IET Professional Development Course on Electric Traction Systems. doi: https://doi.org/10.1049/ic:20080505
  17. Andreychenko, V. P., Donets, A. V., Gerasimenko, V. A. (2012). Povyshenie energoeffektivnosti na gorodskom elektricheskom transporte. Komunalne hospodarstvo mist, 107, 412–417.
  18. Hamacek, Š., Bartłomiejczyk, M., Hrbáč, R., Mišák, S., Stýskala, V. (2014). Energy recovery effectiveness in trolleybus transport. Electric Power Systems Research, 112, 1–11. doi: https://doi.org/10.1016/j.epsr.2014.03.001
  19. Sładkowski, A. (Ed.). (2020). Ecology in Transport: Problems and Solutions. Springer. doi: https://doi.org/10.1007/978-3-030-42323-0
  20. Biryukov, V. V., Porsev, E. G. (2018). Tyagoviy elektricheskiy privod. Novosibirsk: Izd-vo NGTU, 312.
  21. Gor, C. P., Shah, V. A., Gor, M. P. (2016). Electric vehicle drive selection related issues. 2016 International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES). doi: https://doi.org/10.1109/scopes.2016.7955554
  22. Kulagin, D., Chernetskiy, B. (2015). The choice of traction motors for building systems for mobile electrical systems. Technology audit and production reserves, 2 (1 (22)), 9–12. doi: http://dx.doi.org/10.15587/2312-8372.2015.39931
  23. Thakar, D. U., Patel, R. A. (2019). Comparison of Advance and Conventional Motors for Electric Vehicle Application. 2019 3rd International Conference on Recent Developments in Control, Automation & Power Engineering (RDCAPE). doi: https://doi.org/10.1109/rdcape47089.2019.8979092
  24. Biryukov, V. V., Kalugin, M. V., P'yanyh, A. N. (2013). K opredeleniyu moshchnosti tyagovogo dvigatelya transportnogo sredstva. Transport: nauka, tehnika, upravlenie, 8, 43–46.
  25. Bartłomiejczyk, M., Mirchevski, S., Jarzebowicz L., Karwowski, K. (2017). How to choose drive's rated power in electrified urban transport? 2017 19th European Conference on Power Electronics and Applications (EPE'17 ECCE Europe). doi: https://doi.org/10.23919/epe17ecceeurope.2017.8098948
  26. Bitar, Z., Sandouk, A., Jabi, S. A. (2015). Testing the Performances of DC Series Motor Used in Electric Car. Energy Procedia, 74, 148–159. doi: https://doi.org/10.1016/j.egypro.2015.07.536
  27. Apostolidou, N., Papanikolaou, N. (2018). Energy Saving Estimation of Athens Trolleybuses Considering Regenerative Braking and Improved Control Scheme. Resources, 7 (3), 43. doi: https://doi.org/10.3390/resources7030043
  28. Brazis, V., Latkovskis, L., Grigans, L. (2010). Simulation of Trolleybus Traction Induction Drive with Supercapacitor Energy Storage System. Latvian Journal of Physics and Technical Sciences, 47 (5). doi: https://doi.org/10.2478/v10047-010-0023-0
  29. Hurtova, I., Sejkorova, M., Verner, J., Šarkan, B. (2018). Comparison of electricity and fossil fuel consumption in trolleybuses and buses. Engineering for Rural Development, 2079–2084. doi: https://doi.org/10.22616/erdev2018.17.n342
  30. Mukha, А. M., Kostin, М. О., Kurylenko, О. Y., Tsyplia, H. V. (2017). Enhancing the operational efficiency of direct current drive based on use of supercondenser power storage units. Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport, 5 (71), 48–60. doi: https://doi.org/10.15802/stp2017/114624
  31. Jandura, P., Kubin, J., Hubka, L. (2017). Electric energy monitoring for applying an energy storage systems in trolleybus DC traction. 2017 IEEE International Workshop of Electronics, Control, Measurement, Signals and Their Application to Mechatronics (ECMSM). doi: https://doi.org/10.1109/ecmsm.2017.7945904
  32. Pavlenko, T., Shavkun, V., Petrenko, A. (2017). Ways to improve operation reliability of traction electric motors of the rolling stock of electric transport. Eastern-European Journal of Enterprise Technologies, 5 (8 (89)), 22–30. doi: https://doi.org/10.15587/1729-4061.2017.112109
  33. Andrienko, P. D., Shilo, S. I., Kaplienko, A. O., Nemudriy, I. Yu. (2007). Issledovanie dinamiki seriesnogo elektrodvigatelya s razlichnymi impul'snymi shemami regulirovaniya. Elektrotekhnika i elektroenerhetyka, 1, 4–8.
  34. Poluyanovich, N. K., Voloshenko, Yu. P., Shushanov, I. I. (2013). Mathematical model of the traction electric drive with pulse-width management for research of the mode of start-up. Izvestiya Yuzhnogo federal'nogo universiteta. Tehnicheskie nauki, 4 (141), 125–130.
  35. Bogdan, N. B., Safonov, A. I., Mazanik, K. I. (2001). Sovremennye sistemy upravleniya tyagovymi elektrodvigatelyami gorodskogo elektricheskogo transporta. Energetika. Izvestiya vysshih uchebnyh zavedeniy i energeticheskih obedineniy SNG, 4, 22–30.
  36. Chan, C. C., Cheng, M. (2013). Vehicle Traction Motors vehicle traction motors. Transportation Technologies for Sustainability, 1103–1132. doi: https://doi.org/10.1007/978-1-4614-5844-9_800
  37. Veltman, A., Pulle, D. W. J., De Doncker, R. W. (2016). Fundamentals of Electrical Drives. Power Systems. doi: https://doi.org/10.1007/978-3-319-29409-4
  38. Deev, S. G., Levykina, V. I. (2000). Energosberegayushchee upravlenie dvigatelem postoyannogo toka. Radioelektronika, informatyka, upravlinnia, 1, 139–142.
  39. Andrienko, P. D., Shylo, S. I., Kaplienko, O. O., Shevchenko, N. M. (2011). Doslidzhennia reostatno-rekuperatyvnoho halmuvannia u systemi impulsnoho rehuliuvannia seriesnoho elektrodvyhuna. Elektrifikatsiya transporta, 2, 6–9.
  40. Luchko, A. R., Strakolist, E. V. (2008). Utochnennaya imitatsionnaya model' tyagovogo elektrodvigatelya postoyannogo toka so smeshannym vozbuzhdeniem. Elektrotekhnika i elektroenerhetyka, 1, 31–36.
  41. Shavelkin, A., Gerasimenko, V., Kostenko, I., Movchan, A. (2016). Modeling of traction electric drive with dc series motors. Eastern-European Journal of Enterprise Technologies, 1 (2 (79)), 42–48. doi: https://doi.org/10.15587/1729-4061.2016.60322
  42. Drubetskyi, A. Yu. (2017). Approximation of universal magnetic characteristic for modelling electric traction machines. Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport, 1 (67), 106–116. doi: https://doi.org/10.15802/stp2017/94031
  43. Andriychenko, V. P., Donets, O. V., Kostenko, I. O. (2012). Vdoskonalennia systemy keruvannia rukhomym skladom elektrychnoho transportu z vykorystanniam DC-DC peretvoriuvacha. Komunalne hospodarstvo mist, 103, 489–497.
  44. Kharchenko, V. F., Daleka, V. K., Andriichenko, V. P., Kostenko, I. O. (2010). Pat. No. 60109 UA. Method for field reduction of traction electric motor of compound excitation type. No. u201013973; declareted: 23.11.2010; published: 10.06.2011, Bul. No. 11.
  45. Andreychenko, V., Zakurday, S., Kostenko, I. (2014). Improvement of the method used for control of starting direkt-currentrailway motor. Eastern-European Journal of Enterprise Technologies, 1 (8 (67)), 31–35. doi: https://doi.org/10.15587/1729-4061.2014.20123
  46. Kostenko, I. A., Petrenko, A. N. (2015). The control algorithm DC-DC converter device for field weakening. Visnyk Natsionalnoho tekhnichnoho universytetu "KhPI". Seriya: Problemy udoskonalennia elektrychnykh mashyn i aparativ. Teoriya i praktyka, 42 (1151), 31–33.
  47. Shavelkin, A., Kostenko, І. (2015). Realization of the mode of weakening of a magnetic field in the traction DC electric drive. Visnyk Kharkivskoho natsionalnoho avtomobilno-dorozhnoho universytetu, 69, 53–60.
  48. Soroka, K. A., Andreychenko, V. P., Kostenko, I. A. (2016). Analysis of Operation Mode Trolleybus Traction Motors with DC-DC Converter by Mathematical Modeling Package MATLAB. Transport: nauka, tehnika, upravlenie, 3, 47–51.
  49. Abhishek, S. (2014). Speed Control of Dc Motor Using Chopper. International Journal of Engineering, Management & Sciences (IJEMS), 1 (10), 5–8. Available at: https://www.academia.edu/9451929/International_Journal_of_Engineering_Management_and_Sciences_Vol._1_Issue_10_October_2014
  50. Forouzesh, M., Siwakoti, Y. P., Gorji, S. A., Blaabjerg, F., Lehman, B. (2017). Step-Up DC–DC Converters: A Comprehensive Review of Voltage-Boosting Techniques, Topologies, and Applications. IEEE Transactions on Power Electronics, 32 (12), 9143–9178. doi: https://doi.org/10.1109/tpel.2017.2652318
  51. Vilberger, M. E., Vislogusov, D. P., Kotin, D. A., Kulekina, A. V. (2017). Bidirectional DC-DC conversion device use at system of urban electric transport. IOP Conference Series: Earth and Environmental Science, 87, 032053. doi: https://doi.org/10.1088/1755-1315/87/3/032053
  52. Grygar, D., Koháni, M., Štefún, R., Drgoňa, P. (2019). Analysis of limiting factors of battery assisted trolleybuses. Transportation Research Procedia, 40, 229–235. doi: https://doi.org/10.1016/j.trpro.2019.07.035
  53. Manjesh, Manjunatha, K. C., Bhoi, A. K., Sherpa, K. S. (2017). Design and Development of Buck-Boost Regulator for DC Motor Used in Electric Vehicle for the Application of Renewable Energy. Advances in Smart Grid and Renewable Energy, 33–37. doi: https://doi.org/10.1007/978-981-10-4286-7_4
  54. Ramalingam, N., Sathishkumar, S., Balasubramani, K., Boobalan, C., Naveen, S., Sridhar, N. (2016). Chopper Fed Speed Control of DC Motor Using PI Controller. IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE), 11 (3), 65–69. Available at: https://www.researchgate.net/publication/315684733_Chopper_Fed_Speed_Control_of_DC_Motor_Using_PI_Controller
  55. Katke, S. P., Rangdal, S. M. (2015). Speed Control of DC Motor Using Microcontroller. International Journal of Scientific Research in Science and Technology, (1) 2, 62–67. Available at: http://ijsrst.com/IJSRST151227
  56. Kostenko, I. O., Kharchenko, V. F., Khvorost, M. V. (2018). Calculation of the magnetic characteristics of the traction dc motor with combined excitation for trolley buses. Electrification of transport, 15, 117–123.
  57. Kostenko, I. (2018). Improvement of the method of calculation of mechanical characteristics of a traction motor of direct current with combined excitation. Technology Audit and Production Reserves, 4 (1 (42)), 4–10. doi: https://doi.org/10.15587/2312-8372.2018.141384
  58. Chernyh, I. V. (2008). Modelirovanie elektrotehnicheskih ustroystv v MATLAB, SimPowerSystems i Simulink. Moscow: DMK Press, Sankt-Peterburg: Piter, 288.

Downloads

Published

2020-06-30

How to Cite

Kharchenko, V., Kostenko, I., Liubarskyi, B., Shaida, V., Kuravskyi, M., & Petrenko О. (2020). Simulating the traction electric drive operation of a trolleybus equipped with mixed excitation motors and a DC-DC converter. Eastern-European Journal of Enterprise Technologies, 3(9 (105), 46–54. https://doi.org/10.15587/1729-4061.2020.205288

Issue

Section

Information and controlling system