Simulating the traction electric drive operation of a trolleybus equipped with mixed excitation motors and a DC-DC converter
DOI:
https://doi.org/10.15587/1729-4061.2020.205288Keywords:
trolleybus traction electric drive, motor of mixed excitation, pulse converter, imitation modelingAbstract
Switching to the new type of a traction drive, from direct to alternating current, cannot be performed instantly in public transportation. The reason is the large fleet of vehicles and associated costs. In most countries in Europe and Asia, this process takes years.
Therefore, the fleet of trolleybuses develops in two directions simultaneously. The first is the purchase of new trolleybuses, that is, the renewal of fleet with modern machines with an alternating current traction motor. The second is the overhaul and modernization of "outdated" machines, in order to improve their performance. Most "obsolete" trolleybuses are equipped with direct current traction motors of serial or mixed excitation. It is possible to achieve substantial energy savings and to improve the characteristics of the traction electric drive with such engines by using a pulse control system and by optimizing control algorithms.
The goal of this study is to increase energy efficiency and to improve the characteristics of the trolleybus traction electric drive, equipped with a direct current motor of mixed excitation. This is accomplished by improving this drive's control system based on the pulse control system via DC-DC.
The feasibility of the tractive electric drive has been tested through imitation and physical modeling. A mathematical model of the DC motor with mixed excitation has also been improved. A special feature of this model is taking into consideration the saturation of the elements of a magnetic wire of the traction motor based on the preliminary performed calculations of a magnetic field using a finite element method. By combining these components, the improved mathematical model of the entire trolleybus electric drive has been built.
The operation of the trolleybus electric drive under a start mode has been simulated. The results have confirmed the increase in the energy efficiency of the traction electric drive by reducing the loss for excitation. The comparison has proven that the losses of energy decreased from 0.587 MJ (0.163 kWh) to 0.531 (0.1475 kWh) MJ, by 9.54 %.
References
- Hutyria, S., Yahlinskyi, V., Chanchin, A., Khomiak, Y., Popov, V. (2020). Evolution of trolley-bus: directions, indicators, trends. Diagnostyka, 21 (1), 11–26. doi: https://doi.org/10.29354/diag/116080
- Grijalva, E. R., López Martínez, J. M. (2019). Analysis of the Reduction of CO2 Emissions in Urban Environments by Replacing Conventional City Buses by Electric Bus Fleets: Spain Case Study. Energies, 12 (3), 525. doi: https://doi.org/10.3390/en12030525
- Tica, S., Filipovic, S., Zivanovic, P., Bajcetic, S. (2011). Development of Trolleybus Passenger Transport Subsystems in Terms of Sustainable Development and Quality of Life in Cities. International Journal for Traffic and Transport Engineering, 1 (4), 196–205.
- Stepanov, P. (2019). Characteristics of construction and operation of trolleybus systems in the world. Prace Komisji Geografii Komunikacji PTG, 22 (3), 64–72. doi: https://doi.org/10.4467/2543859xpkg.19.018.11284
- Grzelec, K., Birr, K. (2016). Development of trolleybus public transport in gdynia as part of a sustainable mobility strategy. Scientific Journal of Silesian University of Technology. Series Transport, 92, 53–63. doi: https://doi.org/10.20858/sjsutst.2016.92.6
- Lyagushkin, A., Yankivskiy, D., Vel'mozhko, A. (2019). Na kakih trolleybusah ezdyat ukraintsy. Passazhirskiy Transport. Available at: https://traffic.od.ua/blogs/antonlyagushkin/1217504
- Zavada, J., Blašković Zavada, J., Miloš, K. (2012). Conditions for Implementing Trolleybuses in Public Urban Transport. PROMET - Traffic&Transportation, 22 (6), 467–474. doi: https://doi.org/10.7307/ptt.v22i6.212
- Bogodistiy, P. (2016). Sovremenniy trolleybus: opisaniya ustroystva i printsipa raboty. Nauka i Tehnika. Available at: https://naukatehnika.com/sovremennyij-trollejbus.html
- Karpliuk, L., Panchenko, B. (2012). Osoblyvosti zastosuvannia chastotnokerovanoho asynkhronnoho elektropryvodu dlia tiahovykh mekhanizmiv. Visnyk Natsionalnoho universytetu «Lvivska politekhnika»: Elektroenerhetychni ta elektromekhanichni systemy, 736, 49–53. Available at: http://ena.lp.edu.ua:8080/bitstream/ntb/15815/1/9-Karplyuk-49-53.pdf
- Sharyakov, V. (2014). Dvadtsat' let vnedreniya asinhronnogo elektroprivoda na gorodskom elektrotransporte. Control Engineering Rossiya, 3 (51), 67–69. Available at: https://controleng.ru/wp-content/uploads/5167.pdf
- Bartłomiejczyk, M., Połom, M., Jakimovska, K. (2013). Application of principal component and hierarchical cluster analysis in classifying defects of trolleybuses. Przeglad Elektrotechniczny, 89 (8), 48–51. Available at: http://www.pe.org.pl/articles/2013/8/10.pdf
- Lyagushkin, A., YAnkivskiy, D. (2020). Kak v proshlom godu obnovlyalis' trolleybusnye parki Ukrainy. Odesskiy Kur'er. Available at: https://uc.od.ua/news/traffic/1222426
- Lyagushkin, A., Vel'mozhko, A. (2019). Proekt EIB "Gorodskoy obshchestvenniy transport v Ukraine": kakih uspehov dobilis' goroda. Passazhirskiy Transport. Available at: https://traffic.od.ua/blogs/antonlyagushkin/1220877
- Mwambeleko, J. J., Kulworawanichpong, T., Greyson, K. A. (2015). Tram and trolleybus net traction energy consumption comparison. 2015 18th International Conference on Electrical Machines and Systems (ICEMS). doi: https://doi.org/10.1109/icems.2015.7385399
- Cherny, M., Kachimov, V. (2009). Implementation of energy efficient equipment and technologies at the rolling stock city electric Ukraine. Municipal economy of cities, 88, 263–266. Available at: https://khg.kname.edu.ua/index.php/khg/article/view/1604/1596
- Nicholson, T. J. (2008). DC & AC traction motors. IET Professional Development Course on Electric Traction Systems. doi: https://doi.org/10.1049/ic:20080505
- Andreychenko, V. P., Donets, A. V., Gerasimenko, V. A. (2012). Povyshenie energoeffektivnosti na gorodskom elektricheskom transporte. Komunalne hospodarstvo mist, 107, 412–417.
- Hamacek, Š., Bartłomiejczyk, M., Hrbáč, R., Mišák, S., Stýskala, V. (2014). Energy recovery effectiveness in trolleybus transport. Electric Power Systems Research, 112, 1–11. doi: https://doi.org/10.1016/j.epsr.2014.03.001
- Sładkowski, A. (Ed.). (2020). Ecology in Transport: Problems and Solutions. Springer. doi: https://doi.org/10.1007/978-3-030-42323-0
- Biryukov, V. V., Porsev, E. G. (2018). Tyagoviy elektricheskiy privod. Novosibirsk: Izd-vo NGTU, 312.
- Gor, C. P., Shah, V. A., Gor, M. P. (2016). Electric vehicle drive selection related issues. 2016 International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES). doi: https://doi.org/10.1109/scopes.2016.7955554
- Kulagin, D., Chernetskiy, B. (2015). The choice of traction motors for building systems for mobile electrical systems. Technology audit and production reserves, 2 (1 (22)), 9–12. doi: http://dx.doi.org/10.15587/2312-8372.2015.39931
- Thakar, D. U., Patel, R. A. (2019). Comparison of Advance and Conventional Motors for Electric Vehicle Application. 2019 3rd International Conference on Recent Developments in Control, Automation & Power Engineering (RDCAPE). doi: https://doi.org/10.1109/rdcape47089.2019.8979092
- Biryukov, V. V., Kalugin, M. V., P'yanyh, A. N. (2013). K opredeleniyu moshchnosti tyagovogo dvigatelya transportnogo sredstva. Transport: nauka, tehnika, upravlenie, 8, 43–46.
- Bartłomiejczyk, M., Mirchevski, S., Jarzebowicz L., Karwowski, K. (2017). How to choose drive's rated power in electrified urban transport? 2017 19th European Conference on Power Electronics and Applications (EPE'17 ECCE Europe). doi: https://doi.org/10.23919/epe17ecceeurope.2017.8098948
- Bitar, Z., Sandouk, A., Jabi, S. A. (2015). Testing the Performances of DC Series Motor Used in Electric Car. Energy Procedia, 74, 148–159. doi: https://doi.org/10.1016/j.egypro.2015.07.536
- Apostolidou, N., Papanikolaou, N. (2018). Energy Saving Estimation of Athens Trolleybuses Considering Regenerative Braking and Improved Control Scheme. Resources, 7 (3), 43. doi: https://doi.org/10.3390/resources7030043
- Brazis, V., Latkovskis, L., Grigans, L. (2010). Simulation of Trolleybus Traction Induction Drive with Supercapacitor Energy Storage System. Latvian Journal of Physics and Technical Sciences, 47 (5). doi: https://doi.org/10.2478/v10047-010-0023-0
- Hurtova, I., Sejkorova, M., Verner, J., Šarkan, B. (2018). Comparison of electricity and fossil fuel consumption in trolleybuses and buses. Engineering for Rural Development, 2079–2084. doi: https://doi.org/10.22616/erdev2018.17.n342
- Mukha, А. M., Kostin, М. О., Kurylenko, О. Y., Tsyplia, H. V. (2017). Enhancing the operational efficiency of direct current drive based on use of supercondenser power storage units. Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport, 5 (71), 48–60. doi: https://doi.org/10.15802/stp2017/114624
- Jandura, P., Kubin, J., Hubka, L. (2017). Electric energy monitoring for applying an energy storage systems in trolleybus DC traction. 2017 IEEE International Workshop of Electronics, Control, Measurement, Signals and Their Application to Mechatronics (ECMSM). doi: https://doi.org/10.1109/ecmsm.2017.7945904
- Pavlenko, T., Shavkun, V., Petrenko, A. (2017). Ways to improve operation reliability of traction electric motors of the rolling stock of electric transport. Eastern-European Journal of Enterprise Technologies, 5 (8 (89)), 22–30. doi: https://doi.org/10.15587/1729-4061.2017.112109
- Andrienko, P. D., Shilo, S. I., Kaplienko, A. O., Nemudriy, I. Yu. (2007). Issledovanie dinamiki seriesnogo elektrodvigatelya s razlichnymi impul'snymi shemami regulirovaniya. Elektrotekhnika i elektroenerhetyka, 1, 4–8.
- Poluyanovich, N. K., Voloshenko, Yu. P., Shushanov, I. I. (2013). Mathematical model of the traction electric drive with pulse-width management for research of the mode of start-up. Izvestiya Yuzhnogo federal'nogo universiteta. Tehnicheskie nauki, 4 (141), 125–130.
- Bogdan, N. B., Safonov, A. I., Mazanik, K. I. (2001). Sovremennye sistemy upravleniya tyagovymi elektrodvigatelyami gorodskogo elektricheskogo transporta. Energetika. Izvestiya vysshih uchebnyh zavedeniy i energeticheskih obedineniy SNG, 4, 22–30.
- Chan, C. C., Cheng, M. (2013). Vehicle Traction Motors vehicle traction motors. Transportation Technologies for Sustainability, 1103–1132. doi: https://doi.org/10.1007/978-1-4614-5844-9_800
- Veltman, A., Pulle, D. W. J., De Doncker, R. W. (2016). Fundamentals of Electrical Drives. Power Systems. doi: https://doi.org/10.1007/978-3-319-29409-4
- Deev, S. G., Levykina, V. I. (2000). Energosberegayushchee upravlenie dvigatelem postoyannogo toka. Radioelektronika, informatyka, upravlinnia, 1, 139–142.
- Andrienko, P. D., Shylo, S. I., Kaplienko, O. O., Shevchenko, N. M. (2011). Doslidzhennia reostatno-rekuperatyvnoho halmuvannia u systemi impulsnoho rehuliuvannia seriesnoho elektrodvyhuna. Elektrifikatsiya transporta, 2, 6–9.
- Luchko, A. R., Strakolist, E. V. (2008). Utochnennaya imitatsionnaya model' tyagovogo elektrodvigatelya postoyannogo toka so smeshannym vozbuzhdeniem. Elektrotekhnika i elektroenerhetyka, 1, 31–36.
- Shavelkin, A., Gerasimenko, V., Kostenko, I., Movchan, A. (2016). Modeling of traction electric drive with dc series motors. Eastern-European Journal of Enterprise Technologies, 1 (2 (79)), 42–48. doi: https://doi.org/10.15587/1729-4061.2016.60322
- Drubetskyi, A. Yu. (2017). Approximation of universal magnetic characteristic for modelling electric traction machines. Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport, 1 (67), 106–116. doi: https://doi.org/10.15802/stp2017/94031
- Andriychenko, V. P., Donets, O. V., Kostenko, I. O. (2012). Vdoskonalennia systemy keruvannia rukhomym skladom elektrychnoho transportu z vykorystanniam DC-DC peretvoriuvacha. Komunalne hospodarstvo mist, 103, 489–497.
- Kharchenko, V. F., Daleka, V. K., Andriichenko, V. P., Kostenko, I. O. (2010). Pat. No. 60109 UA. Method for field reduction of traction electric motor of compound excitation type. No. u201013973; declareted: 23.11.2010; published: 10.06.2011, Bul. No. 11.
- Andreychenko, V., Zakurday, S., Kostenko, I. (2014). Improvement of the method used for control of starting direkt-currentrailway motor. Eastern-European Journal of Enterprise Technologies, 1 (8 (67)), 31–35. doi: https://doi.org/10.15587/1729-4061.2014.20123
- Kostenko, I. A., Petrenko, A. N. (2015). The control algorithm DC-DC converter device for field weakening. Visnyk Natsionalnoho tekhnichnoho universytetu "KhPI". Seriya: Problemy udoskonalennia elektrychnykh mashyn i aparativ. Teoriya i praktyka, 42 (1151), 31–33.
- Shavelkin, A., Kostenko, І. (2015). Realization of the mode of weakening of a magnetic field in the traction DC electric drive. Visnyk Kharkivskoho natsionalnoho avtomobilno-dorozhnoho universytetu, 69, 53–60.
- Soroka, K. A., Andreychenko, V. P., Kostenko, I. A. (2016). Analysis of Operation Mode Trolleybus Traction Motors with DC-DC Converter by Mathematical Modeling Package MATLAB. Transport: nauka, tehnika, upravlenie, 3, 47–51.
- Abhishek, S. (2014). Speed Control of Dc Motor Using Chopper. International Journal of Engineering, Management & Sciences (IJEMS), 1 (10), 5–8. Available at: https://www.academia.edu/9451929/International_Journal_of_Engineering_Management_and_Sciences_Vol._1_Issue_10_October_2014
- Forouzesh, M., Siwakoti, Y. P., Gorji, S. A., Blaabjerg, F., Lehman, B. (2017). Step-Up DC–DC Converters: A Comprehensive Review of Voltage-Boosting Techniques, Topologies, and Applications. IEEE Transactions on Power Electronics, 32 (12), 9143–9178. doi: https://doi.org/10.1109/tpel.2017.2652318
- Vilberger, M. E., Vislogusov, D. P., Kotin, D. A., Kulekina, A. V. (2017). Bidirectional DC-DC conversion device use at system of urban electric transport. IOP Conference Series: Earth and Environmental Science, 87, 032053. doi: https://doi.org/10.1088/1755-1315/87/3/032053
- Grygar, D., Koháni, M., Štefún, R., Drgoňa, P. (2019). Analysis of limiting factors of battery assisted trolleybuses. Transportation Research Procedia, 40, 229–235. doi: https://doi.org/10.1016/j.trpro.2019.07.035
- Manjesh, Manjunatha, K. C., Bhoi, A. K., Sherpa, K. S. (2017). Design and Development of Buck-Boost Regulator for DC Motor Used in Electric Vehicle for the Application of Renewable Energy. Advances in Smart Grid and Renewable Energy, 33–37. doi: https://doi.org/10.1007/978-981-10-4286-7_4
- Ramalingam, N., Sathishkumar, S., Balasubramani, K., Boobalan, C., Naveen, S., Sridhar, N. (2016). Chopper Fed Speed Control of DC Motor Using PI Controller. IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE), 11 (3), 65–69. Available at: https://www.researchgate.net/publication/315684733_Chopper_Fed_Speed_Control_of_DC_Motor_Using_PI_Controller
- Katke, S. P., Rangdal, S. M. (2015). Speed Control of DC Motor Using Microcontroller. International Journal of Scientific Research in Science and Technology, (1) 2, 62–67. Available at: http://ijsrst.com/IJSRST151227
- Kostenko, I. O., Kharchenko, V. F., Khvorost, M. V. (2018). Calculation of the magnetic characteristics of the traction dc motor with combined excitation for trolley buses. Electrification of transport, 15, 117–123.
- Kostenko, I. (2018). Improvement of the method of calculation of mechanical characteristics of a traction motor of direct current with combined excitation. Technology Audit and Production Reserves, 4 (1 (42)), 4–10. doi: https://doi.org/10.15587/2312-8372.2018.141384
- Chernyh, I. V. (2008). Modelirovanie elektrotehnicheskih ustroystv v MATLAB, SimPowerSystems i Simulink. Moscow: DMK Press, Sankt-Peterburg: Piter, 288.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Viktor Kharchenko, Ivan Kostenko, Borys Liubarskyi, Viktor Shaida, Maksym Kuravskyi, Оleksandr Petrenko
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.