Robust estimation of the area of adequacy of forecasting one-parameter model of exponential smoothing
DOI:
https://doi.org/10.15587/1729-4061.2020.205843Keywords:
exponential smoothing, inverse verification, forecasting model adequacy, robust interval estimation.Abstract
The problem of parameter synthesis of a forecasting one-parameter model of exponential smoothing for predictive estimation of indicators of the organizational and technical system is considered. To select intervals of a given quality in the range of admissible values of the internal parameter, the criterion of absolute error of multiple forecasts is selected. It allowed the formation of an analytical retrospective model with «soft» constraints. As a result, a method of robust estimation of the adequacy area of the forecasting one-parameter exponential smoothing model is developed, which allows one to analytically evaluate the limits of the adequacy area of the forecasting model depending on the requirements for its retrospective accuracy. The proposed method allows the user to specify a set of permissible retrospective errors depending on the requirements of forecasting specifications. The proposed method can be used for parameter adjustment of one-parameter forecasting models and serves as a decision support tool in the forecasting process. The simulation results are interval estimates, which are preferable to point ones in the process of parameter synthesis. Unlike search methods, the analytical form of retrospective dependencies allows you to obtain a solution with high accuracy and, if necessary, provides the analyst with the opportunity for graphical analysis of the adequacy area of the model. The example shows the fragment of estimating the dynamics of the time series in a retrospective analysis with a depth of three values and specified limit relative errors of 1–4 %. Under such conditions, the area for a reasonable selection of the adjustment parameter is determined by the combined intervals of a width of about 20 % of the initial range of acceptable values.
References
- Romanenkov, Y., Vartanian, V. (2016). Formation of prognostic software support for strategic decision-making in an organization. Eastern-European Journal of Enterprise Technologies, 2 (9 (80)), 25–34. doi: https://doi.org/10.15587/1729-4061.2016.66306
- De Baets, S., Harvey, N. (2020). Using judgment to select and adjust forecasts from statistical models. European Journal of Operational Research, 284 (3), 882–895. doi: https://doi.org/10.1016/j.ejor.2020.01.028
- Shorikov, A. F., Butsenko, E. V. (2006). Problema vybora metoda prognozirovaniya rezul'tatov investitsionnogo proektirovaniya. Journal of new economy, 5 (17), 183–191. Available at: https://cyberleninka.ru/article/n/problema-vybora-metoda-prognozirovaniya-rezultatov-investitsionnogo-proektirovaniya
- Samarskiy, A. A., Mihaylov, A. P. (2005). Matematicheskoe modelirovanie: idei, metody, primery. Moscow: Fizmatlit, 320. Available at: https://biblioclub.ru/index.php?page=book_red&id=68976
- Kublanov, M. S. (2015). Check of the mathematical model adequacy. Civil Aviation High Technologies, 211, 29–36. Available at: https://avia.mstuca.ru/jour/article/view/373
- Hyndman, R., Koehler, A., Ord, K., Snyder, R. (2008). Forecasting with Exponential Smoothing: The State Space Approach. Springer, 362. doi: https://doi.org/10.1007/978-3-540-71918-2
- De Oca, M. A. M., Ferrante, E., Scheidler, A., Rossi, L. F. (2013). Binary Consensus via Exponential Smoothing. Complex Sciences, 244–255. doi: https://doi.org/10.1007/978-3-319-03473-7_22
- Vasiliev, A. A. (2013). The method of selecting smoothing constant in the forecasting model Brown. Vestnik TvGU. Seriya: Ekonomika i upravlenie, 17, 183–196. Available at: https://core.ac.uk/download/pdf/74270258.pdf
- De Livera, A. (2010). Automatic Forecasting with a Modified Exponential Smoothing State Space Framework. Monash University. Available at: https://core.ac.uk/download/pdf/6340705.pdf
- Corberán-Vallet, A., Bermúdez, J. D., Segura, J. V., Vercher, E. (2010). A Forecasting Support System Based on Exponential Smoothing. Intelligent Systems Reference Library, 181–204. doi: https://doi.org/10.1007/978-3-642-13639-9_8
- Shastri, S., Sharma, A., Mansotra, V., Sharma, A., Bhadwal, A. S., Kumari, M. (2018). A Study on Exponential Smoothing Method for Forecasting. International Journal of Computer Sciences and Engineering, 6 (4), 482–485. doi: https://doi.org/10.26438/ijcse/v6i4.482485
- Wan Ahmad, W. K. A., Ahmad, S. (2013). Arima model and exponential smoothing method: A comparison. AIP Conference Proceedings. doi: https://doi.org/10.1063/1.4801282
- Butakova, M. M. (2008). Ekonomicheskoe prognozirovanie: metody i priemy prakticheskih raschetov. Moscow: KNORUS, 168.
- Lipatova, N. G. (2015). Imitatsionnoe modelirovanie protsessov tamozhennogo kontrolya. Moscow: Izd-vo Rossiyskoy tamozhennoy akademii, 164. Available at: http://rta.customs.ru/nrta/attachments/3756_978-5-9590-0846-8.pdf
- Billah, B., King, M. L., Snyder, R. D., Koehler, A. B. (2006). Exponential smoothing model selection for forecasting. International Journal of Forecasting, 22 (2), 239–247. doi: https://doi.org/10.1016/j.ijforecast.2005.08.002
- Budaev, P. V. (2009). Prakticheskoe primenenie kolichestvennyh metodov prognozirovaniya. System Research & Information Technologies, 2, 92–106. Available at: https://ela.kpi.ua/bitstream/123456789/7771/1/08_Budae.pdf
- Litvinov, V. V., Zadorozhniy, A. A. (2014). Instrumental'nye sredstva sozdaniya modeley v usloviyah nepolnoty dannyh. Matematicheskie mashiny i sistemy, 4, 60–71. Available at: https://cyberleninka.ru/article/n/instrumentalnye-sredstva-sozdaniya-modeley-v-usloviyah-nepolnoty-dannyh
- Botchkarev, A. (2019). A New Typology Design of Performance Metrics to Measure Errors in Machine Learning Regression Algorithms. Interdisciplinary Journal of Information, Knowledge, and Management, 14, 045–076. doi: https://doi.org/10.28945/4184
- Yager, R. R. (2013). Exponential smoothing with credibility weighted observations. Information Sciences, 252, 96–105. doi: https://doi.org/10.1016/j.ins.2013.07.008
- Mayer, G. (2017). Interval Analysis. De Gruyter, 518. doi: https://doi.org/10.1515/9783110499469
- Olive, D. J. (2017). Robust Multivariate Analysis. Springer. doi: https://doi.org/10.1007/978-3-319-68253-2
- Cipra, T. (1992). Robust exponential smoothing. Journal of Forecasting, 11 (1), 57–69. doi: https://doi.org/10.1002/for.3980110106
- Crevits, R., Croux, C. (2017). Forecasting Using Robust Exponential Smoothing with Damped Trend and Seasonal Components. SSRN Electronic Journal. doi: https://doi.org/10.2139/ssrn.3068634
- Van den Broeke, M., De Baets, S., Vereecke, A., Baecke, P., Vanderheyden, K. (2019). Judgmental forecast adjustments over different time horizons. Omega, 87, 34–45. doi: https://doi.org/10.1016/j.omega.2018.09.008
- Vasiliev, A. A. (2012). The selection criteria of forecast models (review). Vestnik TvGU. Seriya: Ekonomika i upravlenie, 13, 133–148. Available at: https://docplayer.ru/65174367-Kriterii-selekcii-modeley-prognoza-obzor-a-a-vasilev.html
- Romanenkov, Yu. (2015). Analysis of the predictive properties of Brown's model in the extended domain of the internal parameter. MOTROL. Commission of Motorization and Energetics in Agriculture, 17 (8), 27–34. Available at: https://www.researchgate.net/publication/315692053_Analysis_of_the_predictive_properties_of_Brown%27s_model_in_the_extended_domain_of_the_internal_parameter
- Romanenkov, Yu. А., Zieiniiev, T. G. (2014). Method of parametric synthesis of brown’s model based on retrospective multi-objective optimization. Zbirnyk naukovykh prats. Seriya: haluzeve mashynobuduvannia, budivnytstvo, 2 (41), 48–56. Available at: https://www.researchgate.net/publication/315693687_Metod_parametriceskogo_sinteza_modeli_Brauna_na_osnove_retrospektivnoj_mnogokriterialnoj_optimizacii
- Valeev, S. G., Kuvaiskova, Yu. E., Yudkova, M. V. (2010). Robust methods of estimation: software, effectiveness. Vestnik Ul'yanovskogo gosudarstvennogo tehnicheskogo universiteta, 1 (49), 29–33. Available at: https://cyberleninka.ru/article/n/robastnye-metody-otsenivaniya-programmnoe-obespechenie-effektivnost
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Yuri Romanenkov, Yurii Pronchakov, Tieimur Zieiniiev
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.