Robust estimation of the area of adequacy of forecasting one-parameter model of exponential smoothing

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.205843

Keywords:

exponential smoothing, inverse verification, forecasting model adequacy, robust interval estimation.

Abstract

The problem of parameter synthesis of a forecasting one-parameter model of exponential smoothing for predictive estimation of indicators of the organizational and technical system is considered. To select intervals of a given quality in the range of admissible values of the internal parameter, the criterion of absolute error of multiple forecasts is selected. It allowed the formation of an analytical retrospective model with «soft» constraints. As a result, a method of robust estimation of the adequacy area of the forecasting one-parameter exponential smoothing model is developed, which allows one to analytically evaluate the limits of the adequacy area of the forecasting model depending on the requirements for its retrospective accuracy. The proposed method allows the user to specify a set of permissible retrospective errors depending on the requirements of forecasting specifications. The proposed method can be used for parameter adjustment of one-parameter forecasting models and serves as a decision support tool in the forecasting process. The simulation results are interval estimates, which are preferable to point ones in the process of parameter synthesis. Unlike search methods, the analytical form of retrospective dependencies allows you to obtain a solution with high accuracy and, if necessary, provides the analyst with the opportunity for graphical analysis of the adequacy area of the model. The example shows the fragment of estimating the dynamics of the time series in a retrospective analysis with a depth of three values and specified limit relative errors of 1–4 %. Under such conditions, the area for a reasonable selection of the adjustment parameter is determined by the combined intervals of a width of about 20 % of the initial range of acceptable values.

Author Biographies

Yuri Romanenkov, National Aerospace University Kharkiv Aviation Institute Chkalovа str., 17, Kharkiv, Ukraine, 61070

Doctor of Technical Sciences, Professor

Department of Management

Yurii Pronchakov, National Aerospace University Kharkiv Aviation Institute Chkalovа str., 17, Kharkiv, Ukraine, 61070

PhD, Dean

Faculty of Software Engineering and Business

Tieimur Zieiniiev, National Aerospace University Kharkiv Aviation Institute Chkalovа str., 17, Kharkiv, Ukraine, 61070

PhD, Associate Professor

Department of Management

References

  1. Romanenkov, Y., Vartanian, V. (2016). Formation of prognostic software support for strategic decision-making in an organization. Eastern-European Journal of Enterprise Technologies, 2 (9 (80)), 25–34. doi: https://doi.org/10.15587/1729-4061.2016.66306
  2. De Baets, S., Harvey, N. (2020). Using judgment to select and adjust forecasts from statistical models. European Journal of Operational Research, 284 (3), 882–895. doi: https://doi.org/10.1016/j.ejor.2020.01.028
  3. Shorikov, A. F., Butsenko, E. V. (2006). Problema vybora metoda prognozirovaniya rezul'tatov investitsionnogo proektirovaniya. Journal of new economy, 5 (17), 183–191. Available at: https://cyberleninka.ru/article/n/problema-vybora-metoda-prognozirovaniya-rezultatov-investitsionnogo-proektirovaniya
  4. Samarskiy, A. A., Mihaylov, A. P. (2005). Matematicheskoe modelirovanie: idei, metody, primery. Moscow: Fizmatlit, 320. Available at: https://biblioclub.ru/index.php?page=book_red&id=68976
  5. Kublanov, M. S. (2015). Check of the mathematical model adequacy. Civil Aviation High Technologies, 211, 29–36. Available at: https://avia.mstuca.ru/jour/article/view/373
  6. Hyndman, R., Koehler, A., Ord, K., Snyder, R. (2008). Forecasting with Exponential Smoothing: The State Space Approach. Springer, 362. doi: https://doi.org/10.1007/978-3-540-71918-2
  7. De Oca, M. A. M., Ferrante, E., Scheidler, A., Rossi, L. F. (2013). Binary Consensus via Exponential Smoothing. Complex Sciences, 244–255. doi: https://doi.org/10.1007/978-3-319-03473-7_22
  8. Vasiliev, A. A. (2013). The method of selecting smoothing constant in the forecasting model Brown. Vestnik TvGU. Seriya: Ekonomika i upravlenie, 17, 183–196. Available at: https://core.ac.uk/download/pdf/74270258.pdf
  9. De Livera, A. (2010). Automatic Forecasting with a Modified Exponential Smoothing State Space Framework. Monash University. Available at: https://core.ac.uk/download/pdf/6340705.pdf
  10. Corberán-Vallet, A., Bermúdez, J. D., Segura, J. V., Vercher, E. (2010). A Forecasting Support System Based on Exponential Smoothing. Intelligent Systems Reference Library, 181–204. doi: https://doi.org/10.1007/978-3-642-13639-9_8
  11. Shastri, S., Sharma, A., Mansotra, V., Sharma, A., Bhadwal, A. S., Kumari, M. (2018). A Study on Exponential Smoothing Method for Forecasting. International Journal of Computer Sciences and Engineering, 6 (4), 482–485. doi: https://doi.org/10.26438/ijcse/v6i4.482485
  12. Wan Ahmad, W. K. A., Ahmad, S. (2013). Arima model and exponential smoothing method: A comparison. AIP Conference Proceedings. doi: https://doi.org/10.1063/1.4801282
  13. Butakova, M. M. (2008). Ekonomicheskoe prognozirovanie: metody i priemy prakticheskih raschetov. Moscow: KNORUS, 168.
  14. Lipatova, N. G. (2015). Imitatsionnoe modelirovanie protsessov tamozhennogo kontrolya. Moscow: Izd-vo Rossiyskoy tamozhennoy akademii, 164. Available at: http://rta.customs.ru/nrta/attachments/3756_978-5-9590-0846-8.pdf
  15. Billah, B., King, M. L., Snyder, R. D., Koehler, A. B. (2006). Exponential smoothing model selection for forecasting. International Journal of Forecasting, 22 (2), 239–247. doi: https://doi.org/10.1016/j.ijforecast.2005.08.002
  16. Budaev, P. V. (2009). Prakticheskoe primenenie kolichestvennyh metodov prognozirovaniya. System Research & Information Technologies, 2, 92–106. Available at: https://ela.kpi.ua/bitstream/123456789/7771/1/08_Budae.pdf
  17. Litvinov, V. V., Zadorozhniy, A. A. (2014). Instrumental'nye sredstva sozdaniya modeley v usloviyah nepolnoty dannyh. Matematicheskie mashiny i sistemy, 4, 60–71. Available at: https://cyberleninka.ru/article/n/instrumentalnye-sredstva-sozdaniya-modeley-v-usloviyah-nepolnoty-dannyh
  18. Botchkarev, A. (2019). A New Typology Design of Performance Metrics to Measure Errors in Machine Learning Regression Algorithms. Interdisciplinary Journal of Information, Knowledge, and Management, 14, 045–076. doi: https://doi.org/10.28945/4184
  19. Yager, R. R. (2013). Exponential smoothing with credibility weighted observations. Information Sciences, 252, 96–105. doi: https://doi.org/10.1016/j.ins.2013.07.008
  20. Mayer, G. (2017). Interval Analysis. De Gruyter, 518. doi: https://doi.org/10.1515/9783110499469
  21. Olive, D. J. (2017). Robust Multivariate Analysis. Springer. doi: https://doi.org/10.1007/978-3-319-68253-2
  22. Cipra, T. (1992). Robust exponential smoothing. Journal of Forecasting, 11 (1), 57–69. doi: https://doi.org/10.1002/for.3980110106
  23. Crevits, R., Croux, C. (2017). Forecasting Using Robust Exponential Smoothing with Damped Trend and Seasonal Components. SSRN Electronic Journal. doi: https://doi.org/10.2139/ssrn.3068634
  24. Van den Broeke, M., De Baets, S., Vereecke, A., Baecke, P., Vanderheyden, K. (2019). Judgmental forecast adjustments over different time horizons. Omega, 87, 34–45. doi: https://doi.org/10.1016/j.omega.2018.09.008
  25. Vasiliev, A. A. (2012). The selection criteria of forecast models (review). Vestnik TvGU. Seriya: Ekonomika i upravlenie, 13, 133–148. Available at: https://docplayer.ru/65174367-Kriterii-selekcii-modeley-prognoza-obzor-a-a-vasilev.html
  26. Romanenkov, Yu. (2015). Analysis of the predictive properties of Brown's model in the extended domain of the internal parameter. MOTROL. Commission of Motorization and Energetics in Agriculture, 17 (8), 27–34. Available at: https://www.researchgate.net/publication/315692053_Analysis_of_the_predictive_properties_of_Brown%27s_model_in_the_extended_domain_of_the_internal_parameter
  27. Romanenkov, Yu. А., Zieiniiev, T. G. (2014). Method of parametric synthesis of brown’s model based on retrospective multi-objective optimization. Zbirnyk naukovykh prats. Seriya: haluzeve mashynobuduvannia, budivnytstvo, 2 (41), 48–56. Available at: https://www.researchgate.net/publication/315693687_Metod_parametriceskogo_sinteza_modeli_Brauna_na_osnove_retrospektivnoj_mnogokriterialnoj_optimizacii
  28. Valeev, S. G., Kuvaiskova, Yu. E., Yudkova, M. V. (2010). Robust methods of estimation: software, effectiveness. Vestnik Ul'yanovskogo gosudarstvennogo tehnicheskogo universiteta, 1 (49), 29–33. Available at: https://cyberleninka.ru/article/n/robastnye-metody-otsenivaniya-programmnoe-obespechenie-effektivnost

Downloads

Published

2020-06-30

How to Cite

Romanenkov, Y., Pronchakov, Y., & Zieiniiev, T. (2020). Robust estimation of the area of adequacy of forecasting one-parameter model of exponential smoothing. Eastern-European Journal of Enterprise Technologies, 3(4 (105), 35–42. https://doi.org/10.15587/1729-4061.2020.205843

Issue

Section

Mathematics and Cybernetics - applied aspects