Development of a system for determining the informativeness of the diagnosing parameters for a cylinder­piston group in the diesel engine during operation

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.206073

Keywords:

diesel engine, diagnosing, compression, cylinder-piston group, crankcase gas pressure, vacuometric properties of mated parts, entropy, informativeness

Abstract

A possibility has been investigated to diagnose the condition of a cylinder-piston group in the diesel engine KamAZ-740.63-400 for trucks KamAZ-6460 after a 60,000 km run. The following diagnosing parameters have been selected: a crankcase gas pressure, the compression and vacuometric properties of a cylinder-piston group. A special feature of these mated parts is that they maintain the normal combustion process in the diesel engine cylinders, as well as its resource. We have determined the boundary limits for diagnosing a crankcase gas pressure ‒ 2.39‒2.41 KPa. Based on data about the crankcase gas pressure, the examined trucks revealed malfunctions on the runs of 36,000 km, 48,000 km, 60,000 km. Given the rules for assessing the characteristics of compression-related faults, the minimum compression value for the diesel engines was 30.05 MPa or its difference among the cylinders did not exceed 10–12 %. The data on compression helped detect faults after 48,000 km run and 60,000 km run. We have determined the boundaries of wear based on the vacuometric parameters: maximum vacuum – 69–86 KPa; residual vacuum – 26–41 KPa. Control of the vacuometric properties of a cylinder-piston group has revealed faults in the diesel engines over their run interval of 36,000–60,000 km.

An entropy approach has been applied to estimate the informativeness of the appropriate diagnosing parameters in bits. The informativeness level of a crankcase gas pressure is 0.329 bits, compression in cylinders – 0.249 bits, vacuometric indicators – 0.582 bits.

This study allows the rational formation of the diesel engine condition diagnosing complexes during technical operation, as well determining the prerequisites for malfunctions. The data acquired are important for transportation and service enterprises and companies that manage freight vehicles

Author Biographies

Andriy Hrynkiv, Central Ukrainian National Technical University Universytetskyi ave., 8, Kropyvnytskyi, Ukraine, 25006

PhD, Senior Researcher

Department of Maintenance and Repair of Machines

Ivan Rogovskii, National University of Life and Environmental Sciences of Ukraine Heroiv Oborony str., 15, Kyiv, Ukraine, 03041

PhD, Senior Researcher

Research Institute of Engineering and Technology

Viktor Aulin, Central Ukrainian National Technical University Universytetskyi ave., 8, Kropyvnytskyi, Ukraine, 25006

Doctor of Technical Sciences, Professor

Department of Maintenance and Repair of Machines

Sergey Lysenko, Central Ukrainian National Technical University Universytetskyi ave., 8, Kropyvnytskyi, Ukraine, 25006

PhD, Associate Professor

Department of Maintenance and Repair of Machines

Liudmyla Titova, National University of Life and Environmental Sciences of Ukraine Heroiv Oborony str., 15, Kyiv, Ukraine, 03041

PhD, Associate Professor

Department of Technical Service and Engineering Management named after M. P. Momotenko

Oleg Zagurskiy, National University of Life and Environmental Sciences of Ukraine Heroiv Oborony str., 15, Kyiv, Ukraine, 03041

Doctor of Technical Sciences, Associate Professor

Department Transport Technologies and Facilities in the Agroindustrial Complex

Ihor Kolosok, National University of Life and Environmental Sciences of Ukraine Heroiv Oborony str., 15, Kyiv, Ukraine, 03041

PhD, Associate Professor

Department Transport Technologies and Facilities in the Agroindustrial Complex

References

  1. Aulin, V., Hrynkiv, A., Lysenko, S., Dykha, A., Zamota, T., Dzyura, V. (2019). Exploring a possibility to control the stressed­strained state of cylinder liners in diesel engines by the tribotechnology of alignment. Eastern-European Journal of Enterprise Technologies, 3 (12 (99)), 6–16. doi: https://doi.org/10.15587/1729-4061.2019.171619
  2. Kryshtopa, S., Melnyk, V., Dolishnii, B., Korohodskyi, V., Prunko, I., Kryshtopa, L. et. al. (2019). Improvement of the model of forecasting heavy metals of exhaust gases of motor vehicles in the soil. Eastern-European Journal of Enterprise Technologies, 4 (10 (100)), 44–51. doi: https://doi.org/10.15587/1729-4061.2019.175892
  3. Marchenko, D. D., Dykha, A. V., Artyukh, V. A., Matvyeyeva, K. S. (2020). Studying the Tribological Properties of Parts Hardened by Rollers during Stabilization of the Operating Rolling Force. Journal of Friction and Wear, 41 (1), 58–64. doi: https://doi.org/10.3103/s1068366620010122
  4. Koszałka, G. (2014). Model of operational changes in the combustion chamber tightness of a diesel engine. Eksploatacja i Niezawodnosc, 16 (1), 133–139. Available at: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84891610623&partnerID=40&md5=1c43eddaf5a3d994ebf7d6d2df41a221
  5. Aulin, V., Hrynkiv, A., Lyashuk, O., Vovk, Y., Lysenko, S., Holub, D. et. al. (2020). Increasing the Functioning Efficiency of the Working Warehouse of the “UVK Ukraine” Company Transport and Logistics Center. Communications - Scientific Letters of the University of Zilina, 22 (2), 3–14. doi: https://doi.org/10.26552/com.c.2020.2.3-14
  6. Shramenko, N., Pavlenko, O., Muzylyov, D. (2019). Information and communication technology: Case of using petri nets for grain delivery simulation at logistics system. CEUR Workshop Proceedings, 2353, 935–949. Available at: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85065480575&partnerID=40&md5=a533466ecdc4ad9fe63f8b12c25b5c32
  7. Aulin, V., Lyashuk, O., Pavlenko, O., Velykodnyi, D., Hrynkiv, A., Lysenko, S. et. al. (2019). Realization of the logistic approach in the international cargo delivery system. Communications - Scientific Letters of the University of Zilina, 21 (2), 3–12. Available at: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066994460&partnerID=40&md5=105d35bd46f8ab7b6de0b6688948d0e3
  8. Osadchiy, S. I., Zozulya, V. A. (2013). Combined Method for the Synthesis of Optimal Stabilization Systems of Multidimensional Moving Objects under Stationary Random Impacts. Journal of Automation and Information Sciences, 45 (6), 25–35. doi: https://doi.org/10.1615/jautomatinfscien.v45.i6.30
  9. Kryshtopa, S., Panchuk, M., Kozak, F., Dolishnii, B., Mykytii, I., Skalatska, O. (2018). Fuel economy raising of alternative fuel converted diesel engines. Eastern-European Journal of Enterprise Technologies, 4 (8 (94)), 6–13. doi: https://doi.org/10.15587/1729-4061.2018.139358
  10. Aulin, V., Lysenko, S., Lyashuk, O., Hrinkiv, A., Velykodnyi, D., Vovk, Y. et. al. (2019). Wear Resistance Increase of Samples Tribomating in Oil Composite with Geo Modifier КGМF-1. Tribology in Industry, 41 (2), 156–165. doi: https://doi.org/10.24874/ti.2019.41.02.02
  11. Aulin, V. V., Pankov, A. O., Zamota, T. M., Lyashuk, O. L., Hrynkiv, A. V., Tykhyi, A. A., Kuzyk, A. V. (2019). Development of mechatronic module for the seeding control system. INMATEH - Agricultural Engineering, 59 (3), 181–188. doi: https://doi.org/10.35633/inmateh-59-20
  12. Іvashkiv, I., Kupalova, H., Goncharenko, N., Khrutba, Y., Vovk, I. (2019). Optimization of commodity flows: The case of bakery enterprises of Ukraine. Montenegrin Journal of Economics, 15 (3), 205–216. doi: https://doi.org/10.14254/1800-5845/2019.15-3.15
  13. Kryshtopa, S. I., Prun’ko, I. B., Dolishnii, B. V., Panchuk, M. V., Bogatchuk, I. M., Mel’nyk, V. M. (2019). Regularities of Wear of Metal-Polymer Friction Couples Under the Influence of Tribocurrents. Materials Science, 55 (2), 193–200. doi: https://doi.org/10.1007/s11003-019-00288-x
  14. Aulin, V., Derkach, O., Makarenko, D., Hrynkiv, A., Pankov, A., Tykhyi, A. (2019). Analysis of tribological efficiency of movable junctions “polymeric­composite materials ‒ steel.” Eastern-European Journal of Enterprise Technologies, 4 (12 (100)), 6–15. doi: https://doi.org/10.15587/1729-4061.2019.176845
  15. Dykha, A., Marchenko, D., Artyukh, V., Zubiekhina-Khaiiat, O., Kurepin, V. (2018). Study and development of the technology for hardening rope blocks by reeling. Eastern-European Journal of Enterprise Technologies, 2 (1 (92)), 22–32. doi: https://doi.org/10.15587/1729-4061.2018.126196
  16. Aulin, V., Hrynkiv, A., Lysenko, S., Rohovskii, I., Chernovol, M., Lyashuk, O., Zamota, T. (2019). Studying truck transmission oils using the method of thermal-oxidative stability during vehicle operation. Eastern-European Journal of Enterprise Technologies, 1 (6 (97)), 6–12. doi: https://doi.org/10.15587/1729-4061.2019.156150
  17. Ageev, E. V., Altukhov, A. Y., Scherbakov, A. V., Novikov, A. N. (2017). Informativeness increasing of internal combustion engines diagnosis due to technical endoscope. Journal of Engineering and Applied Sciences, 12 (4), 1028–1030. Available at: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85018945495&doi=10.3923%2fjeasci.2017.1028.1030&partnerID=40&md5=b0d5548616d81ce16fd58c7143301f98
  18. Bulgakov, V., Ivanovs, S., Safchenko, I., Boris, A., Rychlivskyj, P. (2019). Theoretical Research of the Design and Technological Parameters of a Device for Lifting of Deep-Seated Table Root Crops. Acta Technologica Agriculturae, 22 (3), 99–103. doi: https://doi.org/10.2478/ata-2019-0018
  19. Aulin, V. V., Chernovol, M. I., Pankov, A. O., Zamota, T. M., Panayotov, K. K. (2017). Sowing machines and systems based on the elements of fluidics. INMATEH - Agricultural Engineering, 53 (3), 21–28. Available at: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85039172369&partnerID=40&md5=2468069fc8914b34091c229527a0cc3e
  20. Hevko, R. B., Strishenets, O. M., Lyashuk, O. L., Tkachenko, I. G., Klendii, O. M., Dzyura, V. O. (2018). Development of a pneumatic screw conveyor design and substantiation of its parameters. INMATEH - Agricultural Engineering, 54 (1), 153–160. Available at: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85053484099&partnerID=40&md5=5bdd8ec973095080f9afe89de7494f9c
  21. Kryshtopa, S., Kryshtopa, L., Melnyk, V., Dolishnii, B., Prunko, I., Demianchuk, Y. (2017). Experimental research on diesel engine working on a mixture of diesel fuel and fusel oils. Transport Problems, 12 (2), 53–63. doi: https://doi.org/10.20858/tp.2017.12.2.6
  22. Kabat, O. S., Kharchenko, B. G., Derkach, O. D., Artemchuk, V. V., Babenko, V. G. (2019). Polymer composites based on fluoroplastic and method for the production thereof. Voprosy Khimii i Khimicheskoi Tekhnologii, 2019 (3), 116–122. doi: https://doi.org/10.32434/0321-4095-2019-124-3-116-122
  23. Kobets, A. S., Derkach, O. D., Kabat, O. S., Kovalenko, V. L., Kotok, V. A. (2019). Recycling of constructional plastics with additives of exhausted polyethylene. ARPN Journal of Engineering and Applied Sciences, 14 (13), 2397–2406. Available at: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076533661&partnerID=40&md5=2017ef4ab03e1c372dedc7b6f49f24a2
  24. Aulin, V., Lyashuk, O., Hrynkiv, A., Lysenko, S., Zamota, T., Vovk, Y. et. al. (2019). Determination of the Rational Composition of the Additive to Oil with the Use of the Katerynivka Friction Geo Modifier. Tribology in Industry, 41 (4), 548–562. doi: https://doi.org/10.24874/ti.2019.41.04.08
  25. Aulin, V., Hrynkiv, A., Lysenko, S., Zamota, T., Pankov, A., Tykhyi, A. (2019). Determining the rational composition of tribologically active additive to oil to improve characteristics of tribosystems. Eastern-European Journal of Enterprise Technologies, 6 (12 (102)), 52–64. doi: https://doi.org/10.15587/1729-4061.2019.184496
  26. Dykha, A., Sorokatyi, R., Makovkin, O., Babak, O. (2017). Calculation-experimental modeling of wear of cylindrical sliding bearings. Eastern-European Journal of Enterprise Technologies, 5 (1 (89)), 51–59. doi: https://doi.org/10.15587/1729-4061.2017.109638
  27. Svazas, M., Navickas, V., Krajnakova, E., Nakonieczny, J. (2019). Sustainable supply chain of the biomass cluster as a factor for preservation and enhancement of forests. Journal of International Studies, 12 (2), 309–321. doi: https://doi.org/10.14254/2071-8330.2019/12-2/20
  28. Dykha, A. V., Zaspa, Y. P., Slashchuk, V. O. (2018). Triboacoustic Control of Fretting. Journal of Friction and Wear, 39 (2), 169–172. doi: https://doi.org/10.3103/s1068366618020046
  29. Ropyak, L. Y., Shatskyi, I. P., Makoviichuk, M. V. (2017). Influence of the Oxide-Layer Thickness on the Ceramic–Aluminium Coating Resistance to Indentation. Metallofizika i Noveishie Tekhnologii, 39 (4), 517–524. doi: https://doi.org/10.15407/mfint.39.04.0517
  30. Aleksandr, D., Dmitry, M. (2018). Prediction the wear of sliding bearings. International Journal of Engineering & Technology, 7 (2.23), 4–8. doi: https://doi.org/10.14419/ijet.v7i2.23.11872
  31. Aulin, V., Hrynkiv, A., Lysenko, S., Lyashuk, O., Zamota, T., Holub, D. (2019). Studying the tribological properties of mated materials C61900 - A48-25BC1.25BNo. 25 in composite oils containing geomodifiers. Eastern-European Journal of Enterprise Technologies, 5 (12 (101)), 38–47. doi: https://doi.org/10.15587/1729-4061.2019.179900
  32. Sorokatyi, R., Chernets, M., Dykha, A., Mikosyanchyk, O. (2019). Phenomenological Model of Accumulation of Fatigue Tribological Damage in the Surface Layer of Materials. Mechanisms and Machine Science, 73, 3761–3769. doi: https://doi.org/10.1007/978-3-030-20131-9_371
  33. Prokopenko, A. K., Golubev, A. P., Korneev, A. A. (2019). Research on Wear Resistance of Multifunctional Coatings Used in the Manufacture of Art and Industrial Products. Materials Science Forum, 945, 670–674. doi: https://doi.org/10.4028/www.scientific.net/msf.945.670
  34. Kazmierczak, A. (2008). Physical aspects of wear of the piston-ring – cylinder set of combustion engines. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 222 (11), 2103–2119. doi: https://doi.org/10.1243/09544070jauto877
  35. Dykha, A. V., Kuzmenko, A. G. (2016). Distribution of friction tangential stresses in the Courtney-Pratt experiment under Bowden’s theory. Journal of Friction and Wear, 37 (4), 315–319. doi: https://doi.org/10.3103/s1068366616040061
  36. Kishortlal, D. B., Mukhopadhyay, A. K. (2016). Failure mode effective analysis of diesel engines used in dumpers. Journal of Mines, Metals and Fuels, 64 (11), 564–567. Available at: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85019202283&partnerID=40&md5=5cde424e70d62b24c7bf014d3832dc1e
  37. Jones, N. B., Li, Y.-H. (2000). A review of condition monitoring and fault diagnosis for diesel engines. Tribotest, 6 (3), 267–291. doi: https://doi.org/10.1002/tt.3020060305

Downloads

Published

2020-06-30

How to Cite

Hrynkiv, A., Rogovskii, I., Aulin, V., Lysenko, S., Titova, L., Zagurskiy, O., & Kolosok, I. (2020). Development of a system for determining the informativeness of the diagnosing parameters for a cylinder­piston group in the diesel engine during operation. Eastern-European Journal of Enterprise Technologies, 3(5 (105), 19–29. https://doi.org/10.15587/1729-4061.2020.206073

Issue

Section

Applied physics