Development of a new form of equations of disturbed motion of a satellite in nearly circular orbits
DOI:
https://doi.org/10.15587/1729-4061.2020.207671Keywords:
osculating elements, nearly circular orbits, disturbed satellite motion, Keplerian elementsAbstract
The use of simple physical reasoning instead of the method of varying constants has made it possible to elaborate a short scheme of deriving equations of disturbed motion of a satellite in nearly circular orbits. The use of a circular Keplerian orbit as a reference orbit has ensured the nondegeneracy of equations and their simple relation with time. All this taken together has made it possible to propose a form of equations convenient for carrying out numerical and analytical studies with its variables having a simple physical meaning.
A relationship between the introduced variables and the Keplerian elements of the orbits was described for undisturbed motion. It was shown that the variables describing the deviation of the orbit radius from the radius of the reference orbit are proportional to eccentricity and deviation of the focal parameter is proportional to the square of the eccentricity.
Relationships were constructed that describe the connection between the introduced variables and the Cartesian coordinates of position and velocity in the inertial coordinate system as well as arguments for choosing the radius of the reference orbit. From the condition of equality of energies of motion along circular reference orbit and in elliptical Keplerian orbit, it is expedient to take the radius of the reference orbit equal to the semi-major axis of the Keplerian ellipse.
Approaches to the possible development of the proposed equations were presented. They make it possible to describe changes in the argument of the orbit perigee. The proposed change of variables makes it possible to avoid degeneracy of equations at very small eccentricities when studying the change in the orbit perigee.
The advantages of using the proposed equations for numerical and analytical studies of satellite motion in nearly circular orbits were shown on concrete calculation examples. It was shown that the results of numerical integration in the proposed variables give almost five orders of magnitude less error than the results of the integration of equations in Cartesian coordinates
References
- Yamamoto, T., Arikawa, Y., Ueda, Y., Itoh, H., Nishida, Y., Ukawa, S. et. al. (2016). Autonomous Precision Orbit Control Considering Observation Planning: ALOS-2 Flight Results. Journal of Guidance, Control, and Dynamics, 39 (6), 1244–1264. doi: https://doi.org/10.2514/1.g001375
- De Florio, S., D’Amico, S., Radice, G. (2013). Flight Results of Precise Autonomous Orbit Keeping Experiment on PRISMA Mission. Journal of Spacecraft and Rockets, 50 (3), 662–674. doi: https://doi.org/10.2514/1.a32347
- Kahle, R., D'Amico, S. (2014). The TerraSAR-X Precise Orbit Control – Concept and Flight Results. Conference: International Symposium on Space Flight Dynamics (ISSFD). Available at: https://www.researchgate.net/publication/263200500_The_TerraSAR-X_Precise_Orbit_Control_-_Concept_and_Flight_Results
- Troger, H., Alpatov, A. P., Beletsky, V. V., Dranovskii, V. I., Khoroshilov, V. S., Pirozhenko, A. V., Zakrzhevskii, A. E. (2010). Dynamics of Tethered Space Systems. Taylor & Francis Group, 245.
- Vallado, D. A. (2013). Fundamentals of astrodynamics and applications. Microcosm Press Year, 1136.
- Beutler, G. (2005). Methods of celestial mechanics Vol. I: Physical, Mathematical, and Numerical Principles. Springer-Verlag Berlin Heidelberg. doi: https://doi.org/10.1007/b138225
- Maslova, A. I., Pirozhenko, A. V. (2016). Orbit changes under the small constant deceleration. Kosmichna nauka i tekhnolohiya, 22 (6), 20–25. doi: https://doi.org/10.15407/knit2016.06.020
- Pirozhenko, A. V., Maslova, A. I., Vasilyev, V. V. (2019). About the influence of second zonal harmonic on the motion of satellite in almost circular orbits. Kosmichna nauka i tekhnolohiya, 25 (2), 3–11. doi: https://doi.org/10.15407/knit2019.02.003
- Wakker, K. F. (2015). Fundamentals of Astrodynamics. Delft University of Technology, 690.
- Mazzini, L. (2016). Flexible Spacecraft Dynamics, Control and Guidance: Technologies by Giovanni Campolo. Springer. doi: https://doi.org/10.1007/978-3-319-25540-8
- Duboshin, G. N. (Ed.) (1976). Spravochnoe rukovodstvo po nebesnoy mehanike i astrodinamike. Moscow: Nauka, 864.
- Baù, G., Bombardelli, C., Peláez, J., Lorenzini, E. (2015). Non-singular orbital elements for special perturbations in the two-body problem. Monthly Notices of the Royal Astronomical Society, 454 (3), 2890–2908. doi: https://doi.org/10.1093/mnras/stv2106
- Jo, J.-H., Park, I.-K., Choe, N.-M., Choi, M.-S. (2011). The Comparison of the Classical Keplerian Orbit Elements, Non-Singular Orbital Elements (Equinoctial Elements), and the Cartesian State Variables in Lagrange Planetary Equations with J2Perturbation: Part I. Journal of Astronomy and Space Sciences, 28 (1), 37–54. doi: https://doi.org/10.5140/jass.2011.28.1.037
- Battin, R. H. (1999). An Introduction to the Mathematics and Methods of Astrodynamics. AIAA Education Series. doi: https://doi.org/10.2514/4.861543
- Bond, V. R., Allman, M. C. (1996). Modern Astrodynamics: Fundamentals and Perturbation Methods. Princeton University Press, 264.
- Baù, G., Bombardelli, C., Peláez, J. (2013). A new set of integrals of motion to propagate the perturbed two-body problem. Celestial Mechanics and Dynamical Astronomy, 116 (1), 53–78. doi: https://doi.org/10.1007/s10569-013-9475-x
- Baù, G., Bombardelli, C. (2014). Time elements for enhanced performance of the DROMO orbit propagator. The Astronomical Journal, 148 (3), 43. doi: https://doi.org/10.1088/0004-6256/148/3/43
- Pirozhenko, A. V. (1999). On constructing new forms of equations of perturbed keplerian motion. Kosmichna nauka i tekhnolohiya, 5 (2-3), 103–107. doi: https://doi.org/10.15407/knit1999.02.103
- Rosengren, A. J., Scheeres, D. J. (2014). On the Milankovitch orbital elements for perturbed Keplerian motion. Celestial Mechanics and Dynamical Astronomy, 118 (3), 197–220. doi: https://doi.org/10.1007/s10569-013-9530-7
- Guglielmo, D., Omar, S., Bevilacqua, R., Fineberg, L., Treptow, J., Poffenberger, B., Johnson, Y. (2019). Drag Deorbit Device: A New Standard Reentry Actuator for CubeSats. Journal of Spacecraft and Rockets, 56 (1), 129–145. doi: https://doi.org/10.2514/1.a34218
- Hoyt, R. P., Barnes, I. M., Voronka, N. R., Slostad, J. T. (2009). Terminator Tape: A Cost-Effective De-Orbit Module for End-of-Life Disposal of LEO Satellites. AIAA SPACE 2009 Conference & Exposition. doi: https://doi.org/10.2514/6.2009-6733
- Lucking, C., Colombo, C., McInnes, C. (2011). A passive high altitude deorbiting strategy. 25th Annual IAA/USU Conference on Small satellites. Available at: https://strathprints.strath.ac.uk/41234/5/Lucking_C_Colombo_C_McInnes_CR_Pure_A_passive_high_altitude_deorbiting_strategy_08_Aug_2011.pdf
- Alpatov, A., Khoroshylov, S., Lapkhanov, E. (2020). Synthesizing an algorithm to control the angular motion of spacecraft equipped with an aeromagnetic deorbiting system. Eastern-European Journal of Enterprise Technologies, 1 (5 (103)), 37–46. doi: https://doi.org/10.15587/1729-4061.2020.192813
- Ismailova, A., Zhilisbayeva, K. (2015). Passive magnetic stabilization of the rotational motion of the satellite in its inclined orbit. Applied Mathematical Sciences, 9, 791–802. doi: https://doi.org/10.12988/ams.2015.4121019
- Aslanov, V. S., Ledkov, A. S. (2020). Space Debris Attitude Control During Contactless Transportation in Planar Case. Journal of Guidance, Control, and Dynamics, 43 (3), 451–461. doi: https://doi.org/10.2514/1.g004686
- Garulli, A., Giannitrapani, A., Leomanni, M., Scortecci, F. (2011). Autonomous Low-Earth-Orbit Station-Keeping with Electric Propulsion. Journal of Guidance, Control, and Dynamics, 34 (6), 1683–1693. doi: https://doi.org/10.2514/1.52985
- Bonaventure, F., Baudry, V., Sandre, T., Gicquel, A.-H. (2012). Autonomous Orbit Control for Routine Station-Keeping on a LEO Mission. Proceedings of the 23rd International Symposium on Space Flight Dynamics. Available at: http://issfd.org/ISSFD_2012/ISSFD23_FDOP2_2.pdf
- Xu, G., Xu, J. (2012). On the singularity problem in orbital mechanics. Monthly Notices of the Royal Astronomical Society, 429 (2), 1139–1148. doi: https://doi.org/10.1093/mnras/sts403
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Анна Маслова
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.