A theoretical study of stability of solid fuel burning with a two­phase gasification area

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.208440

Keywords:

solid fuel combustion, fuel gasification, combustion instability, deflagration explosion, detonation

Abstract

Theoretically, the combustion stability of solid fuel, which during the combustion process is decomposed according to the “solid phase – liquid phase – gas” scheme, is investigated. The physical and mathematical models for the propagation of small perturbations of combustion are constructed. The medium in all areas of combustion and in combustion products is assumed to be incompressible, and the viscosity of the fuel in the liquid phase is taken into account. Thus, perturbations of hydrodynamic parameters are considered not only in the two-phase gasification zone, but also in the combustion products area and the geometric perturbation of the instantaneous combustion front (flame), distorting the shape of its surface, is also specified. That is the characteristic feature of the presented physical model. The mathematical eigenvalue problem is set and solved. This problem is reduced to an algebraic characteristic equation for a dimensionless complex eigenvalue, which positivity determines the instability. It is proved that in the limiting case of the absence of a liquid phase, absolute instability takes place. At the other limiting case – for perturbations with infinite wavelength – a transition to stability takes place. The latter fact indicates that the presence of a viscous liquid film and changes in the length of the gasification zone under the influence of perturbations have a significant stabilizing effect on solid fuel combustion. In the general case, a sufficient condition for the instability of the roots of the characteristic equation is analytically determined. The physical interpretation of the mathematical results explains the processes of autoturbulization of solid fuel combustion and the possible transition of combustion to deflagration explosion or detonation. The results of the study are in qualitative agreement with experimental data and can additionally be used for theoretical analysis of the stability of the liquid fuel combustion process in the combustion chamber

Author Biographies

Viktor Volkov, Odessa I. I. Mechnikov National University Dvorianska str., 2, Odessa, Ukraine, 65082

Doctor of Technical Sciences, Professor

Department of Theoretical Mechanics

Natalia Makoyed, Odessa National Academy of Food Technologies Kanatna str., 112, Odessa, Ukraine, 65039

PhD, Associate Professor

Department of Information Technologies and Cybersecurity

Yuliia Loboda, Odessa National Academy of Food Technologies Kanatna str., 112, Odessa, Ukraine, 65039

PhD, Associate Professor

Department of Information Technologies and Cybersecurity

Oksana Sokolova, Odessa National Academy of Food Technologies Kanatna str., 112, Odessa, Ukraine, 65039

Senior Lecturer

Department of Information Technologies and Cybersecurity

References

  1. Clavin, P., Searby, G. (2016). Combustion Waves and Fronts in Flows: Flames, Shocks, Detonations, Ablation Fronts and Explosion of Stars. Cambridge University Press. doi: https://doi.org/10.1017/cbo9781316162453
  2. Liberman, M. (2008). Introduction to Physics and Chemistry of Combustion. Springer. doi: https://doi.org/10.1007/978-3-540-78759-4
  3. Swinney, H. L., Gollub, J. P. (Eds.) (2014). Hydrodynamic Instabilities and the Transition to Turbulence. Springer. doi: https://doi.org/10.1007/3-540-13319-4
  4. Bradley, D., Cresswell, T. M., Puttock, J. S. (2001). Flame acceleration due to flame-induced instabilities in large-scale explosions. Combustion and Flame, 124 (4), 551–559. doi: https://doi.org/10.1016/s0010-2180(00)00208-x
  5. Ciccarelli, G., Dorofeev, S. (2008). Flame acceleration and transition to detonation in ducts. Progress in Energy and Combustion Science, 34 (4), 499–550. doi: https://doi.org/10.1016/j.pecs.2007.11.002
  6. Khokhlov, A., Oran, E., Thomas, G. (1999). Numerical simulation of deflagration-to-detonation transition: the role of shock–flame interactions in turbulent flames. Combustion and Flame, 117 (1-2), 323–339. doi: https://doi.org/10.1016/s0010-2180(98)00076-5
  7. Oran, E. S., Gamezo, V. N. (2007). Origins of the deflagration-to-detonation transition in gas-phase combustion. Combustion and Flame, 148 (1-2), 4–47. doi: https://doi.org/10.1016/j.combustflame.2006.07.010
  8. Koksharov, A., Bykov, V., Kagan, L., Sivashinsky, G. (2018). Deflagration-to-detonation transition in an unconfined space. Combustion and Flame, 195, 163–169. doi: https://doi.org/10.1016/j.combustflame.2018.03.006
  9. Volkov, V. E. (2014). Deflagration-to-detonation transition and the detonation induction distance estimation. Odes’kyi Politechnichnyi Universytet. Pratsi, 1, 120–126. doi: https://doi.org/10.15276/opu.1.43.2014.21
  10. Pekalski, A. A., Zevenbergen, J. F., Lemkowitz, S. M., Pasman, H. J. (2005). A Review of Explosion Prevention and Protection Systems Suitable as Ultimate Layer of Protection in Chemical Process Installations. Process Safety and Environmental Protection, 83 (1), 1–17. doi: https://doi.org/10.1205/psep.04023
  11. Nolan, D. P. (2011). Handbook of Fire and Explosion Protection Engineering Principles: for Oil, Gas, Chemical and Related Facilities. William Andrew, 340. doi: https://doi.org/10.1016/c2009-0-64221-5
  12. Nettleton, M. A. (1987). Gaseous detonations: Their nature, effects and control. Springer. doi: https://doi.org/10.1007/978-94-009-3149-7
  13. Buckmaster, J. (1993). The Structure and Stability of Laminar Flames. Annual Review of Fluid Mechanics, 25 (1), 21–53. doi: https://doi.org/10.1146/annurev.fl.25.010193.000321
  14. Peters, N. (2000). Turbulent Combustion. Cambridge University Press. doi: https://doi.org/10.1017/cbo9780511612701
  15. Veynante, D., Vervisch, L. (2002). Turbulent combustion modeling. Progress in Energy and Combustion Science, 28 (3), 193–266. doi: https://doi.org/10.1016/s0360-1285(01)00017-x
  16. Giusti, A., Mastorakos, E. (2019). Turbulent Combustion Modelling and Experiments: Recent Trends and Developments. Flow, Turbulence and Combustion, 103 (4), 847–869. doi: https://doi.org/10.1007/s10494-019-00072-6
  17. Greatrix, D. (2012). Powered Flight: The Engineering of Aerospace Propulsion. Springer. doi: https://doi.org/10.1007/978-1-4471-2485-6
  18. Crocco, L., Cheng, S.-I. (1956). Theory of Combustion Instability in Liquid Propellant Rocket Motors. Butterworths Scientific Publications, 200.
  19. Shchelkin, K. I., Troshin, Ya. K. (1964). Gasdynamics of combustion. National Aeronautics and Space Administration, 365.
  20. Marshakov, V. N., Istratov, A. G., Puchkov, V. M. (2003). Combustion-front non-one-dimensionality in single- and double-base propellants. Combustion, Explosion, and Shock Waves, 39, 452–457. doi: https://doi.org/10.1023/A:1024791006499
  21. Marshakov, V. N., Istratov, A. G. (2007). Critical diameter and transverse waves of powder combustion. Combustion, Explosion, and Shock Waves, 43 (2), 188–193. doi: https://doi.org/10.1007/s10573-007-0025-2
  22. Timnat, Y. M. (1987). Advanced Chemical Rocket Propulsion. Academic Press, 286.
  23. Gusachenko, L. K., Zarko, V. E. (2005). Combustion models for energetic materials with completely gaseous reaction products. Combustion, Explosion, and Shock Waves, 41 (1), 20–34. doi: https://doi.org/10.1007/s10573-005-0003-5
  24. Sabdenov, K. O. (2016). Generation of hydrodynamic instability in the gasification region of propellant. Combustion, Explosion, and Shock Waves, 52 (6), 683–693. doi: https://doi.org/10.1134/s0010508216060083
  25. Vilyunov, V. N., Dvoryashin, A. A. (1973). An experimental investigation of the erosive burning effect. Combustion, Explosion, and Shock Waves, 7 (1), 38–42. doi: https://doi.org/10.1007/bf00748911
  26. Gusachenko, L. K., Zarko, V. E. (2007). Erosive burning. Modeling problems. Combustion, Explosion, and Shock Waves, 43 (3), 286–296. doi: https://doi.org/10.1007/s10573-007-0042-1
  27. Sabdenov, K. O., Erzada, M. (2016). Negative erosion effect and the emergence of unstable combustion. 1. Analysis of the models. Combustion, Explosion, and Shock Waves, 52 (1), 67–73. doi: https://doi.org/10.1134/s0010508216010093
  28. Sabdenov, K. O., Erzada, M. (2016). Negative erosion effect and the emergence of unstable combustion. 2. numerical simulation. Combustion, Explosion, and Shock Waves, 52 (2), 193–202. doi: https://doi.org/10.1134/s001050821602009x
  29. On the theory of slow combustion (1965). Collected Papers of L.D. Landau, 396–403. doi: https://doi.org/10.1016/b978-0-08-010586-4.50059-6
  30. Aslanov, S. K., Volkov, V. E. (1991). Integral method for study of hydrodynamic stability of a laminar flame. Combustion, Explosion, and Shock Waves, 27 (5), 553–558. doi: https://doi.org/10.1007/bf00784941
  31. Volkov, V. E. (2015). One-dimensional flame instability and control of burning in fire-chamber. Odes’kyi Politechnichnyi Universytet. Pratsi, 1, 85–91. doi: https://doi.org/10.15276/opu.1.45.2015.14
  32. Kuo, K. K., Acharya, R. (2012). Fundamentals of Turbulent and Multiphase Combustion. John Wiley & Sons, Inc. doi: https://doi.org/10.1002/9781118107683
  33. Xiao, H. (2016). Experimental and Numerical Study of Dynamics of Premixed Hydrogen-Air Flames Propagating in Ducts. Springer. doi: https://doi.org/10.1007/978-3-662-48379-4
  34. Yoon, S. H., Noh, T. J., Fujita, O. (2017). Effects of Lewis number on generation of primary acoustic instability in downward-propagating flames. Proceedings of the Combustion Institute, 36 (1), 1603–1611. doi: https://doi.org/10.1016/j.proci.2016.09.013
  35. Yoon, S. H., Hu, L., Fujita, O. (2018). Experimental observation of pulsating instability under acoustic field in downward-propagating flames at large Lewis number. Combustion and Flame, 188, 1–4. doi: https://doi.org/10.1016/j.combustflame.2017.09.026
  36. Dubey, A. K., Koyama, Y., Hashimoto, N., Fujita, O. (2019). Effect of geometrical parameters on thermo-acoustic instability of downward propagating flames in tubes. Proceedings of the Combustion Institute, 37 (2), 1869–1877. doi: https://doi.org/10.1016/j.proci.2018.06.155
  37. Volkov, V. E. (2014). Mathematical simulation of laminar-turbulent transition and the turbulence scale estimation. Odes’kyi Politechnichnyi Universytet. Pratsi, 2, 155–159. doi: https://doi.org/10.15276/opu.2.44.2014.27
  38. Volkov, V. E. (2016). Two-dimensional flame instability and control of burning in the half-open firechamber. Automation of Technological and Business Processes, 8 (1), 21–27. doi: https://doi.org/10.21691/atbp.v8i1.18

Downloads

Published

2020-08-31

How to Cite

Volkov, V., Makoyed, N., Loboda, Y., & Sokolova, O. (2020). A theoretical study of stability of solid fuel burning with a two­phase gasification area. Eastern-European Journal of Enterprise Technologies, 4(8 (106), 54–65. https://doi.org/10.15587/1729-4061.2020.208440

Issue

Section

Energy-saving technologies and equipment