Determining efficient operating modes and sizes of blades for multi-scraper trench excavators

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.208957

Keywords:

trench digging, trench excavator, scraper excavator, scraper, blade, critical depth, soil cutting

Abstract

The presented results of scientific research are aimed at increasing the efficiency of trenching for laying the utility lines using new less energy-consuming technologies of excavating the soil with the working equipment of multi-scraper excavators.

The proposed method of determining the efficient operating modes for excavators when digging a trench is based on the idea of cutting the soil with the blades at a critical depth level, which guarantees consumption of minimum specific energy and maximum efficiency of the machine. This becomes possible if the operation of such blades is provided with the absolute values and the ratio of the speeds of cutting and submitting the working body into the face.

To determine the efficient modes of multi-scraper excavators and the size of their edge side blades, the conditions of their effective unloading were identified and the patterns of changing the soil movement over the surface of unloading scrapers depending on the time of unloading were determined. For the same purpose, the dependences of the blocked cutting speed on the trench width were determined and the technical performance of the excavator was specified on the basis of determining the soil bearing capacity for one group of blades. It is found that the time of unloading the soil from the scrapers very slightly depends on their angular velocity within its change in the unloading zone. On this basis, the maximum angular speed of the scrapers is determined. The identified indicators are related to the width of the edge side blades performing asymmetric locked cutting, whose dimensions were determined by calculations.

The obtained efficient operating modes of scraper trench excavators and the size of their edge side blades allow developing practical recommendations for improving the working equipment of excavators of this type

Author Biographies

Svyatoslav Kravets, National University of Water and Environmental Engineering Soborna str., 11, Rivne, Ukraine, 33028

Doctor of Technical Sciences, Professor

Department of Building, Road, Melioration, Agricultural Machinery and Equipment

Vladimir Suponyev, Kharkiv National Automobile and Highway University Yaroslava Mudroho str., 25, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of Build and Travelling Machines

Aleksej Goponov, Kharkiv National Automobile and Highway University Yaroslava Mudroho str., 25, Kharkiv, Ukraine, 61002

Postgraduate Student

Department of Build and Travelling Machines

Serhii Kovalevskyi, Kharkiv National Automobile and Highway University Yaroslava Mudroho str., 25, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of Build and Travelling Machines

Andrii Koval, National Transport University Mykhailа Omelianovycha-Pavlenka str., 1, Kyiv, Ukraine 01010

PhD

Department of Road Building Machines

References

  1. Shatskiy, A. S. (2007). O sostoyanii mehanizatsii truboprovodnogo stroitel'stva. Truboprovodniy transport. Moscow: OAO VNIIST, 4, 10–14.
  2. Penchuk, V. A., Rudnev, V. K., Saenko, N. V., Suponev, V. N., Oleksyn, V. I., Balesniy, S. P., Vivchar, S. M. (2015). Soil thrust boring plant of static action with ring spacers of horizontal wells. Magazine of Civil Engineering, 54 (02), 100–107. doi: https://doi.org/10.5862/mce.54.11
  3. Kravets, S., Suponyev, V., Rieznikov, O., Kosiak, O., Nechydiuk, A., Klets, D., Chevychelova, O. (2018). Determination of the resistance of the cylindrical­tubular drill for trenchless laying of underground communications. Eastern-European Journal of Enterprise Technologies, 3 (7 (93)), 64–70. doi: https://doi.org/10.15587/1729-4061.2018.131838
  4. Posmituha, O., Kravets, S., Suponyev, V., Glavatsky, K. (2018). Determination of equivalent and optimal sizes of wedge tip from flange for the static perforation of soil. MATEC Web of Conferences, 230, 01011. doi: https://doi.org/10.1051/matecconf/201823001011
  5. ESSO et le TCHAD. Mondialisationca. Available at: http://www.internationalnews.fr/20-categorie-10189106.html
  6. Chevron Pipe Line Company. Available at: https://www.chevron.com/operations/transportation/chevron-pipe-line-company
  7. The Natural Gas Pipeline Company of America. Available at: http://www.frankkryder.com/assetmap.htm
  8. Saudi Aramco – where energy is opportunity. Available at: http://www.saudiaramco.com/en/home.html
  9. Trans-Arabian Pipeline Company. Available at: http://almashriq.hiof.no/lebanon/300/380/388/tapline/
  10. Vermeer. URL: https://www.vermeer.com/em
  11. Trencor Introduces T14 Trencher Upgrade (2018). Available at: https://www.americanaugers.com/trencor-introduces-t14-trencher-upgrade/
  12. Cleveland Trencher Models. Available at: http://www.cleveland-trencher.com/
  13. Sobolevskyi, R., Korobiichuk, V., Levytskyi, V., Pidvysotskyi, V., Kamskykh, O., Kovalevych, L. (2020). Optimization of the process of efficiency management of the primary kaolin excavation on the curved face of the conditioned area. Rudarsko-Geološko-Naftni Zbornik, 35 (1), 123–137. doi: https://doi.org/10.17794/rgn.2020.1.10
  14. Palomba, I., Richiedei, D., Trevisani, A., Sanjurjo, E., Luaces, A., Cuadrado, J. (2019). Estimation of the digging and payload forces in excavators by means of state observers. Mechanical Systems and Signal Processing, 134, 106356. doi: https://doi.org/10.1016/j.ymssp.2019.106356
  15. Moczko, P., Pietrusiak, D., Wieckowski, J. (2019). Investigation of the failure of the bucket wheel excavator bridge conveyor. Engineering Failure Analysis, 106, 104180. doi: https://doi.org/10.1016/j.engfailanal.2019.104180
  16. Yu, X., Pang, X., Zou, Z., Zhang, G., Hu, Y., Dong, J., Song, H. (2019). Lightweight and High-Strength Design of an Excavator Bucket under Uncertain Loading. Mathematical Problems in Engineering, 2019, 1–12. doi: https://doi.org/10.1155/2019/3190819
  17. Musiyko, V. D., Koval, A. B. (2014). Vyznachennia sylovoho navantazhennia bazovoho shasi universalnoi zemleryinoi mashyny z viyalno-postupalnoiu podacheiu yii robochoho obladnannia na zabiy. Stroitel'stvo. Materialovedenie. Mashinostroenie. Seriya: Podemno-transportnye, stroitel'nye i dorozhnye mashiny i oborudovanie, 79, 133–140.
  18. Musiyko, V. D., Kravets, S. V., Pukhtaievych, O. I. (2018). Vyznachennia ratsionalnykh rezhymiv roboty intensyfikatoriv rozvantazhennia gruntu z robochykh orhaniv zemleryinykh mashyn bezperervnoi diyi. Visnyk Natsionalnoho transportnoho universytetu, 1, 241–251.
  19. Kravets, S. V., Kosiak, O. V., Haponov, O. O., Yanchyk, T. O. (2019). Vyznachennia chysla liniy rizannia ta vysoty hruntotransportuiuchykh skrebkiv lantsiuhovo-skrebkovykh transheinykh ekskavatoriv. U kn.: Budivnytstvo, materialoznavstvo, mashynobuduvannia. Intensyfikatsiya robochykh protsesiv budivelnykh ta dorozhnikh mashyn. Seriya: Pidiomno-transportni, budivelni ta dorozhni mashyny i obladnannia. Dnipro: DVNZ «PDABA», 66–74.
  20. Kosiak, O. V., Haponov, O. O., Pukhtaievych, O. H. (2018). Peredumovy stvorennia krytychnohlybynnykh rezhymiv roboty bahatoskrebkovykh lantsiuhovykh transheinykh ekskavatoriv. Str-vo. Materialovedenie. Mashinostroenie. Seriya: Pod'omno-transp., stroit., dor. mashiny i obor., 103, 145–151.

Downloads

Published

2020-08-31

How to Cite

Kravets, S., Suponyev, V., Goponov, A., Kovalevskyi, S., & Koval, A. (2020). Determining efficient operating modes and sizes of blades for multi-scraper trench excavators. Eastern-European Journal of Enterprise Technologies, 4(1 (106), 23–28. https://doi.org/10.15587/1729-4061.2020.208957

Issue

Section

Engineering technological systems