On heavy machines dynamical loading under adjacent links shocks

Authors

DOI:

https://doi.org/10.15587/1729-4061.2014.21055

Keywords:

elastic-inertial system, motion equation, collision of links, kinematics, dynamic load

Abstract

The mathematical model, describing the dynamics under collision of heavy machinery adjacent links in the presence of gaps and other elements with a dead or smoothness zone of transfer functions of kinematic chains, is given. The model is designed using a procedure of "smoothing" discontinuous functions and regarding a variable structure. The specific example of a dynamic system and its numerical calculation is considered. The pressure between the roller and a workpiece is expressed by means of the Hertz’s law. The roller motion is represented as a plane-parallel motion. Four differential equations describe the process of the roller colliding against the workpiece. By using a numerical integration of differential equations, the solution in the form of diagrams is worked out. The developed technique will allow calculating the resource of the rolling mill table more precisely when designing and thereby, improving its technical level.

Author Biographies

Сергей Иванович Трубачев, National Technical University of Ukraine «Kyiv Polytechnic Institute» Peremogi, 37, к.1, Kiev, Ukraine

Candidate of engineerings sciences

Department of dynamics of durability of machines and resistance of materials

Дмитрий Степанович Лысюк, S. P. Timoshenko Institute of mechanics NAS of Ukraine Nesterova str., 3, Kiev, Ukraine

Engineer of department of dynamics of the complex systems

Ольга Юрьевна Талимонова, S. P. Timoshenko Institute of mechanics NAS of Ukraine Nesterova str., 3, Kiev, Ukraine

Leading engineer of department of dynamics of the complex systems

References

  1. Опойцев, В. И. Задачи и проблемы асимптотического агрегирования [Текст] / В. И. Опойцев // Автоматика и телемеханика. – 1991. – № 8. – С. 133 – 144.
  2. Lastman, G. J. A comparisen of the Balansed Matrix Method and Aggregation Method of Model Reduction [Text] / G. J. Lastman, N. K. Sinha // IEE Transect of Automat. Control. – 1985. – V.AC. –30, № 3. – P. 301 – 304.
  3. Pars, L. A. Analytical Dynamics [Text] / L. A. Pars. – London, 1964. – 636 p.
  4. Zukas, J. A. Impact Dynamics [Text] / T. Nicholas, H.F.Swift, L.B. Greszczuk, D. Curran // New York. –1982. – P. 296.
  5. Алимов, О. Д. Распространение волн деформаций в ударных системах [Текст]/ В. К. Манжосов, В. Э. Еремьянц, Удар // М.: Наука, 1985. – 358 c.
  6. Голубенцев, А. Н. Интегральные методы в динамике [Текст] / А. Н. Голубенцев // К.: Техніка. – 1967. – 352 с.
  7. Khoroshun, A. S. Stability of Motion of a Particle with Variable Constraints [Text] / A. S. Khoroshun // Int. Appl. Mech.– 2011. – 47, N 2.– P. 203–214.
  8. Labou, M. Numerical Schemes for Stability in Probobility of Pertyrbed Dynamical Systems [Text] /M. Labou // Int. Appl. Mech. – 2012.– 48, N 4.– P. 465–484.
  9. Anik’ev, I. I. Experimental Determination of the Reaction of an Elastic Cantilever-Rod Systems to a Shok Wave [Text] / M. I. Mikhailova, E. A. Sushchenko // Int. Appl. Mech.– 2012.– 48, N 6.– P. 736 –740.
  10. Целиков, А. И. Теория прокатки [Текст] / А. Д. Томленов, В. И. Зюзин, А. В. Третьяков, Г. С. Никитин // М: Металлургия. – 1982. – 335 с.
  11. Ключев, В. И. Теория е лектропривода [Текст] / В. И. Клюев // М.: Энергоатомиздат. – 1985. – 560 с.
  12. Opojcev, V. I. (1991). Zadachi i problemy asimptoticheskogo agregirovanija. Avtomatika i telemehanika, 8, 133-144.
  13. Lastman, G. J., Sinha, N. K. (1985). A comparisen of the Balansed Matrix Method and Aggregation Method of Model Reduction. IEE Transect of Automat. Control, Vol. 30, № 3, 301-304.
  14. Pars, L. A. (1964). Analytical Dynamics. London, 636.
  15. Zukas, J. A., Nicholas, T., Swift, H. F., Greszczuk, L. B., Curran, D. (1982). Impact Dynamics. New York, 296.
  16. Alimov, O. D., Manzhosov, V. K., Erem’janc, V. Je. (1985). Rasprostranenie voln deformacij v udarnyh sistemah. Nauka, 358.
  17. Golubencev, A. N. (1967). Integral’nye metody v dinamike. Tehnіka, 352.
  18. Khoroshun, A. S. (2011). Stability of Motion of a Particle with Variable Constraints. Int. Appl. Mech, Vol. 47, № 2, 203-214.
  19. Labou, M. (2012). Numerical Schemes for Stability in Probobility of Pertyrbed Dynamical Systems. Int. Appl. Mech, Vol. 48, № 4, 465-484.
  20. Anik’ev, I. I., Mikhailova, M. I., Sushchenko, E. A. (2012). Experimental Determination of the Reaction of an Elastic Cantilever-Rod Systems to a Shok Wave. Appl. Mech, Vol. 48, № 6, 736 -740.
  21. Celikov, A. I., Tomlenov, A. D., Zjuzin, V. I., Tret’jakov, A. V., Nikitin, G. S. (1982). Teorija prokatki. M: Metallurgija, 335.
  22. Kljuchev, V. I. (1985). Teorija elektroprivoda. M.: Jenergoatomizdat, 560.

Published

2014-02-04

How to Cite

Трубачев, С. И., Лысюк, Д. С., & Талимонова, О. Ю. (2014). On heavy machines dynamical loading under adjacent links shocks. Eastern-European Journal of Enterprise Technologies, 1(7(67), 58–62. https://doi.org/10.15587/1729-4061.2014.21055

Issue

Section

Applied mechanics