The furnace for crystal growth by directional solidification in skull crucible

Authors

DOI:

https://doi.org/10.15587/1729-4061.2014.21059

Keywords:

method of directional crystallization, skull method, crystal, laboratory facility, crystal growth

Abstract

The furnace, based on the skull method for obtaining laboratory samples of halide crystals (40 mmin diameter and15 mmhigh) with the melting temperature of900 °C, is considered in the paper. This technological solution allows growing crystals without using expensive platinum crucibles and moving or rotating design elements. The process control system and the thermal unit design are designed for determining and controlling temperature and a thermal gradient for carrying out crystal growth and minimizing the skull layer thickness, preventing the contact of melt with crucible and obviating crystal contamination. Placed in a vacuum vessel and sealed independently, the crucible allows controlling the impurity composition of the output crystal. The grown PbF2 and LiF polycrystals demonstrate the effectiveness of the suggested approach in obtaining small crystals. The prospect of using this approach lies in the possibility of a transition from receiving laboratory samples of crystals to the industrial crystals.

Author Biographies

Владимир Иванович Таранюк, Institut for scintillation materials NAS of Ukraine Lenina 60, Kharkov, Ukraine, 61001

Head of department of crystal growth

Александр Вульфович Гектин, Institut for scintillation materials NAS of Ukraine Lenina 60, Kharkov, Ukraine, 61001

Doctor of Science

Deputy Director of Science 

Александр Владимирович Колесников, Institut for Scintillation Materials NAS of Ukraine Lenina 60, Kharkov, Ukraine, 61001

Ph. Doctor of Science

Deputy head of department

References

  1. Bridgman, P. W. Certain physical properties of single crystals of tungsten, antimony, bismuth, tellurium, cadmium, zinc and tin [Text] / P. W. Bridgman // Proc. Am. Acad. – 1925. – Vol. 60. – P. 305-383.
  2. Kyropoulos, S. Ein Verfahren zur Herstellung grosser Kristalle [Text] / S. Kyropoulos // Anorg Z. Chem. – 1926. – Т. 154. – С. 308-31.
  3. Fukuda, T. Shaped Crystals Growth by Micro-Pulling-Down Technique [Text] / T. Fukuda, V. I. Chani // Springer. – 2007. – XV. – 341 с.
  4. Uda, S. Analysis of Ge distribution in Si1 − xGex single crystal fibers by the micro-pulling down method [Text] / S. Uda, J. Kon, K. Shimamura, T. Fukuda // J Cryst Growth. – 1996. – Т. 167. – С. 64-73.
  5. Mueller, M. Device for making monocrystalline or multicrystalline materials, in particular multicrystalline silicon [Text] / M. Mueller, M. Finkbeiner, U. Sahr, I. Schwirtlich // patent US 7,811,383 B2 2010.
  6. Kisil, I. I. Growing of NaI:Tl crystal plates in garnissage [Text] / I. I. Kisil, V. I. Taranyuk, S. V. Yaroslavkin // Funct Mater. – 2008. – Т. 15(4). – С. 600-603.
  7. Taranyuk, V. NaI(Tl) and CsI(Tl) scintillation crystal growth by skull method [Text] / V. Taranyuk, A. Gektin, I. Kisil, A. Kolesnikov // J Cryst Growth. – 2011. – Т. 318(1). – С. 820-822.
  8. Неуструев, А. А. Вакуумные гарнисажные печи [Text] / А. А. Неуструев, Г.Л. Ходоровский // М.: Металлургия. – 1967. – 272 с.
  9. Kuz’minov, Yu S. Cubic Zirconia and Skull Melting [Text] / Yu S. Kuz’minov, E. E. Lomonova, V. V. Osiko // Cambridge International Science Publishing. –2008. – 420 с.
  10. Ren, G. Structural defects and characteristics of lead fluoride (PbF2) crystals grown by non-vacuum Bridgman method [Text] / G. Ren, D. Shen, S. Wang, Z. Yin // J Cryst Growth. – 2002. – Т. 243. – С. 539-545.
  11. Bridgman, P. W. (1925). Certain physical properties of single crystals of tungsten, antimony, bismuth, tellurium, cadmium, zinc and tin. Proc Am Aca, 60, 305-383.
  12. Kyropoulos, S. (1926). Ein Verfahren zur Herstellung grosser Kristalle. Anorg Z Chem, 154, 308-311.
  13. Fukuda, T., Chani, V. I. (2007). Shaped Crystals Growth by MicroPulling-Down Technique. Springer, XV, 341.
  14. Uda, S., Kon, J., Shimamura, K., Fukuda, T. (1996). Analysis of Ge distribution in Si1 − xGex single crystal fibers by the micro-pulling down method. J Cryst Growth, 167, 64-73.
  15. Mueller, M., Finkbeiner, M., Sahr, U., Schwirtlich, I., (2010). Patent US 7,811,383 B2 2010. Device for making monocrystalline or multicrystalline materials, in particular multicrystalline silicon.
  16. Kisil, I. I., Taranyuk, V. I., Yaroslavkin, S. V., (2008). Growing of NaI:Tl crystal plates in garnissage. Funct Mater, 15(4), 600-603.
  17. Taranyuk, V., Gektin, A., Kisil, I., Kolesnikov, A. (2011). NaI(Tl) and CsI(Tl) scintillation crystal growth by skull method. J Cryst Growth, 318(1), 820-822.
  18. Neustruev, A. A. (1967). Vacuum skull furnace. Moscow, USSR: Metallurgy, 272.
  19. Kuz’minov, Yu S., Lomonova, E. E., Osiko, V. V. (2008). Cubic Zirconia and Skull Melting. Cambridge International Science Publishing, 420.
  20. Ren, G., Shen, D., Wang, S., Yin, Z. (2002). Structural defects and characteristics of lead fluoride (PbF2) crystals grown by nonvacuum Bridgman method. J Cryst Growth, 243, 539-545.

Published

2014-02-07

How to Cite

Таранюк, В. И., Гектин, А. В., & Колесников, А. В. (2014). The furnace for crystal growth by directional solidification in skull crucible. Eastern-European Journal of Enterprise Technologies, 1(5(67), 4–7. https://doi.org/10.15587/1729-4061.2014.21059

Issue

Section

Applied physics