Stochastic model and method of zoning water networks

Authors

DOI:

https://doi.org/10.15587/1729-4061.2014.21080

Keywords:

zoning, quasi-stationary mode, dispersion, pressure regulator, overpressure, stochastic model

Abstract

Water consumption at different time of the day is uneven. The model of steady flow distribution in water-supply networks is calculated for maximum consumption and effectively used in the network design and reconstruction. Quasi-stationary modes, in which the parameters are random variables and vary relative to their mean values are more suitable for operational management and planning of rational network operation modes.

Leaks, which sometimes exceed 50 % of the volume of water supplied, are one of the problems in water-supply systems. One of the ways to reduce leaks is zoning (overpressure zone definition) and pressure regulators installation.

The method of reengineering water networks by their zoning and pressure regulators installation was developed in the paper. Its implementation provides a significant reduction of the total overpressure in the water network nodes, water leak volumes and saving material and energy resources.

The improved method for zoning the water network is based on the stochastic model of quasi-stationary modes in the water supply and distribution systems, and pressure regulators parameters optimization for each determined zone.

Author Biographies

Андрей Дмитриевич Тевяшев, Kharkiv National University of Radioelectronics 14, ave. Lenina, Kharkov, Ukraine, 61166

Doctor of Technical Sciences, Professor, Head of the Department of Applied Mathematics

Ольга Ивановна Матвиенко, Kharkiv National University of Radio Electronics Lenina 16, Kharkov, Ukraine, 61166

Postgraduate

Department of Applied Mathematics

References

  1. Абрамов, Н. Н. Водоснабжение [Текст] / Н. Н. Абрамов. – М. ; Стройиздат, 1974. – 481 с.
  2. Burgschweiger, J. Nonlinear Programming Techniques for Operative Planning in Large Drinking Water Networks [Text] / J. Burgschweiger, B. Bernd Gnadig, M. C. Steinbach // Konrad-Zuse-Zentrum fur Informationstechnik. – Berlin, ZIB-Report, 2005.
  3. Burgschweiger, J. Optimization Models for Operative Planning in Drinking Water Networks [Text] / J. Burgschweiger, B. Bernd Gnadig, M. C. Steinbach // Konrad-Zuse-Zentrum fur Informationstechnik. – Berlin, ZIB-Report, 2004.
  4. Steinbach, M. C. Hierarhical Sparsity in Multistage Convex Stochastic Programs [Text] / M. C. Steinbach // Konrad-Zuse-Zentrum fur Informationstechnik. - Berlin, ZIB-Report, 2000.
  5. Steinbach, M. C. Tree-Sparse Convex Programs [Text] / M. C. Steinbach // Konrad-Zuse-Zentrum fur Informationstechnik. - Berlin, ZIB-Report, 2001.
  6. Hoeve, W.-J. Operations Research Techniques in Constraint Programming [Text] / W.-J. Hoeve // Institute for Logic, Language and Computation Universiteit van Amsterdam, 2005. - 154 p.
  7. Steinbach, M. C. General Information Constraints in Stochastic Programs [Text] / M. C. Steinbach. // Berlin, ZIB, 2001.
  8. Евдокимов, А. Г. Потокораспределение в инженерных сетях [Текст] / А. Г. Евдокимов, В. В.Дубровский, А. Д. Тевяшев. - М. : Стройиздат, 1979. - 199 с.
  9. Евдокимов, А. Г. Оперативное управление потокораспределением в инженерных сетях [Текст] /А. Г. Евдокимов, А. Д.Тевяшев. – Харьков. : Вища школа, 1980. - 144 с.
  10. Тевяшев, А. Д. Применение линеаризованных моделей установившегося потокораспределения в задачах оперативного управления [Текст] / А. Д. Тевяшев, С. И. Козыренко // Новые информационные технологии управления развитием и функционированием трубопроводных систем энергетики, 1993. – С. 20 - 33.
  11. Вентцель, Е. С. Теория вероятностей [Текст] / Е. С. Вентцель. - М. : Наука, 1969. – 564 с.
  12. Abramov, N. N. (1974). Water Supply. M. ; Stroyizdat, 481.
  13. Burgschweiger, J., Bernd Gnadig, B., Steinbach, M. C. (2005). Nonlinear Programming Techniques for Operative Planning in Large Drinking Water Networks.Konrad-Zuse-Zentrum fur Informationstechnik Berlin, ZIB-Report.
  14. Burgschweiger, J., Bernd Gnadig, B., Steinbach, M. C. (2004). Optimization Models for Operative Planning in Drinking Water Networks. Konrad-Zuse-Zentrum fur Informationstechnik Berlin, ZIB-Report.
  15. Steinbach, M. C. (2000). Hierarhical Sparsity in Multistage Convex Stochastic Programs. Konrad-Zuse-Zentrum fur Informationstechnik Berlin, ZIB-Report.
  16. Steinbach, M. C. (2001). Tree-Sparse Convex Programs. Konrad-Zuse-Zentrum fur Informationstechnik Berlin, ZIB-Report.
  17. Hoeve, W.-J. (2005) Operations Research Techniques in Constraint Programming. Institute for Logic, Language and Computation Universiteit van Amsterdam, 154.
  18. Steinbach, M. C. (2001). General Information Constraints in Stochastic Programs. Berlin : ZIB.
  19. Evdokimov, A. G., Dubrovsky, V. V., Teviashev, A. D. (1979). Flow Distribution in the Network Еngineering. M. ; Stroyizdat, 199.
  20. Evdokimov, A. G., Teviashev, A. D. (1980). Operational Management of Load Flow in Engineering Networks. Kharkiv. ; High School, 144.
  21. Teviashev, A. D., Kozyrenko, S. I. (1993). Application of Linearized Models of Steady Flow Distribution in the Operational Management Tasks. New Information Management Technology Development and Operation of Pipeline Systems of Energy.
  22. Wentzel, E. S. (1969). Probability Theory. Science, Moscow, 564.

Published

2014-02-12

How to Cite

Тевяшев, А. Д., & Матвиенко, О. И. (2014). Stochastic model and method of zoning water networks. Eastern-European Journal of Enterprise Technologies, 1(4(67), 17–24. https://doi.org/10.15587/1729-4061.2014.21080

Issue

Section

Mathematics and Cybernetics - applied aspects