Predicting the shape formation of parts with a flange and an axial protrusion in the process of combined aligned radial-direct extrusion

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.212018

Keywords:

simulation of combined extrusion processes, kinematic module, energy method, semi-finished product shape formation

Abstract

Using the calculation schemes CS-1 (with the presence of a trapezoid module) and CS-1a (with rectangular kinematic modules) has been proposed for the process of the combined radial-direct extrusion of parts with a flange and an axial protrusion. The application of a trapezoidal kinematic module allows the description of the characteristic regions of metal flow, close to the actual course of the process based on the distorted coordinate grids. On the basis of the energy method, the values of the reduced deformation pressure have been obtained using the upper estimate of the power of deformation forces inside the trapezoidal kinematic module. The optimization involved the parameter Rk that determines the position of the surface of the interface of metal flow into an axial protrusion and a flange zone. We have performed a comparative analysis of the theoretical calculations of the magnitude of the reduced deformation pressure and the influence of geometric ratios and friction conditions on the qualitative and quantitative differences in the character of the change in the resulting curves. The overestimation of data on assessing the force mode based on the CS-1a scheme relative to the calculations based on the CS-1 scheme can be as high as 50 % and indicates the rationality of using the latter. This is due to the limitation in the use of the optimization (the absence of the optimization of the height of the deformation site) for the scheme containing elementary rectangular kinematic modules. The deviation from the experimentally obtained increments in an axial protrusion does not exceed 7‒10 %, which indicates the validity of the use of the CS-1 estimation scheme with a trapezoidal kinematic module. Thus, it can be argued that it is correct to determine the position of the boundary of the surface of the interface of metal flow into an axial protrusion and a flange zone and the resulting assessment of the formation of a semi-finished product

Author Biographies

Natalia Hrudkina, Donbass State Engineering Academy Akademichna str., 72, Kramatorsk, Ukraine, 84313

PhD

Department of Metal Forming

Leila Aliieva, Donbass State Engineering Academy Akademichna str., 72, Kramatorsk, Ukraine, 84313

Doctor of Technical Sciences, Associate Professor

Department of Metal Forming

Oleg Markov, Donbass State Engineering Academy Akademichna str., 72, Kramatorsk, Ukraine, 84313

Doctor of Technical Sciences, Professor, Head of Department

Department of Computerized Design and Modeling of Processes and Machines

Khrystyna Malii, Donbass State Engineering Academy Akademichna str., 72, Kramatorsk, Ukraine, 84313

PhD, Senior Lecturer

Department of Metal Forming

Liudmyla Sukhovirska, Donetsk National Medical University Pryvokzalna str., 27, Lyman, Ukraine, 84404

PhD

Department of Medical Physics and Information Technologies No. 2

Mykola Kuznetsov, Donbas National Academy of Civil Engineering and Architecture Heroiv Nebesnoi Sotni str., 14, Kramatorsk, Ukraine, 84333

PhD

Department of Mechanical Engineering

References

  1. Dragobetskii, V., Zagirnyak, V., Shlyk, S., Shapoval, A., Naumova, O. (2019). Application of explosion treatment methods for production Items of powder materials. Przegląd Elektrotechniczny, 1 (5), 41–44. doi: https://doi.org/10.15199/48.2019.05.10
  2. Markov, O. E., Aliiev, I. S., Aliieva, L. I., Hrudkina, N. S. (2020). Computerized and physical modeling of upsetting operation by combined dies. Journal of Chemical Technology and Metallurgy, 55 (3), 640–648. Available at: https://dl.uctm.edu/journal/node/j2020-3/23_19-275_p_640-648.pdf
  3. Kukhar, V., Kurpe, O., Klimov, E., Balalayeva, E., Dragobetskii, V. (2018). Improvement of the Method for Calculating the Metal Temperature Loss on a Coilbox Unit at The Rolling on Hot Strip Mills. International Journal of Engineering & Technology, 7 (4.3), 35–39. doi: https://doi.org/10.14419/ijet.v7i4.3.19548
  4. Markov, O., Gerasimenko, O., Aliieva, L., Shapoval, A. (2019). Development of the metal rheology model of high-temperature deformation for modeling by finite element method. EUREKA: Physics and Engineering, 2, 52–60. doi: https://doi.org/10.21303/2461-4262.2019.00877
  5. Anishchenko, O. S., Kukhar, V. V., Grushko, A. V., Vishtak, I. V., Prysiazhnyi, A. H., Balalayeva, E. Y. (2019). Analysis of the Sheet Shell’s Curvature with Lame’s Superellipse Method during Superplastic Forming. Materials Science Forum, 945, 531–537. doi: https://doi.org/10.4028/www.scientific.net/msf.945.531
  6. Aliev, I. S. (1988). Radial extrusion process. Soviet Forging and Metal Stamping Technology, 3, 54–61.
  7. Zhang, S. H., Wang, Z. R., Wang, Z. T., Xu, Y., Chen, K. B. (2004). Some new features in the development of metal forming technology. Journal of Materials Processing Technology, 151 (1-3), 39–47. doi: https://doi.org/10.1016/j.jmatprotec.2004.04.098
  8. Perig, A. (2015). Two-parameter Rigid Block Approach to Upper Bound Analysis of Equal Channel Angular Extrusion Through a Segal 2θ-die. Materials Research, 18 (3), 628–638. doi: https://doi.org/10.1590/1516-1439.004215
  9. Ogorodnikov, V. А., Dereven’ko, I. А., Sivak, R. I. (2018). On the Influence of Curvature of the Trajectories of Deformation of a Volume of the Material by Pressing on Its Plasticity Under the Conditions of Complex Loading. Materials Science, 54 (3), 326–332. doi: https://doi.org/10.1007/s11003-018-0188-x
  10. Hrudkina, N., Aliieva, L., Abhari, P., Markov, O., Sukhovirska, L. (2019). Investigating the process of shrinkage depression formation at the combined radial-backward extrusion of parts with a flange. Eastern-European Journal of Enterprise Technologies, 5 (1 (101)), 49–57. doi: https://doi.org/10.15587/1729-4061.2019.179232
  11. Noh, J., Hwang, B. B., Lee, H. Y. (2015). Influence of punch face angle and reduction on flow mode in backward and combined radial backward extrusion process. Metals and Materials International, 21 (6), 1091–1100. doi: https://doi.org/10.1007/s12540-015-5276-y
  12. Jamali, S. S., Faraji, G., Abrinia, K. (2016). Hydrostatic radial forward tube extrusion as a new plastic deformation method for producing seamless tubes. The International Journal of Advanced Manufacturing Technology, 88 (1-4), 291–301. doi: https://doi.org/10.1007/s00170-016-8754-6
  13. Jafarzadeh, H., Zadshakoyan, M., Abdi Sobbouhi, E. (2010). Numerical Studies of Some Important Design Factors in Radial-Forward Extrusion Process. Materials and Manufacturing Processes, 25 (8), 857–863. doi: https://doi.org/10.1080/10426910903536741
  14. Xue, Y., Bai, B., Chen, S., Li, H., Zhang, Z., Yang, B. (2017). Study on processing and structure property of Al-Cu-Mg-Zn alloy cup-shaped part produced by radial-backward extrusion. The International Journal of Advanced Manufacturing Technology, 95 (1-4), 687–696. doi: https://doi.org/10.1007/s00170-017-1073-8
  15. Farhoumand, A., Ebrahimi, R. (2009). Analysis of forward–backward-radial extrusion process. Materials & Design, 30 (6), 2152–2157. doi: https://doi.org/10.1016/j.matdes.2008.08.025
  16. Alieva, L. I. (2018). Sovershenstvovanie protsessov kombinirovannogo vydavlivaniya. Kramatorsk: OOO «Tirazh - 51», 352.
  17. Aliieva, L. I., Goncharuk, K. V., Shkira, A. V. (2016). Bar forming parts with flanges radial direct extrusion. Bulletin of NTU «KhPI». Series: Innovative technologies and equipment handling materials in mechanical engineering and metallurgy, 30 (1202), 5–10. Available at: http://repository.kpi.kharkov.ua/bitstream/KhPI-Press/29268/1/vestnik_KhPI_2016_31_Alieva_Formoizmenenie.pdf
  18. Soyarslan, C., Tekkaya, A. E. (2009). Prevention of Internal Cracks in Forward Extrusion by Means of Counter Pressure: A Numerical Treatise. Steel Research International, 80 (9), 671–679. doi: https://doi.org/10.2374/SRI08SP170
  19. Dereven'ko, I. A. (2012). Deformiruemost' i kachestvo zagotovok v usloviyah kombinirovannogo formoizmeneniya. Obrabotka metallov davleniem, 3 (32), 87–96.
  20. Hrudkina, N., Aliieva, L. (2020). Modeling of cold extrusion processes using kinematic trapezoidal modules. FME Transactions, 48 (2), 357–363. doi: https://doi.org/10.5937/fme2002357h
  21. Aliieva, L., Hrudkina, N., Aliiev, I., Zhbankov, I., Markov, O. (2020). Effect of the tool geometry on the force mode of the combined radial-direct extrusion with compression. Eastern-European Journal of Enterprise Technologies, 2 (1 (104)), 15–22. doi: https://doi.org/10.15587/1729-4061.2020.198433
  22. Aliiev, I. S., Solodun, E. M., Kryuger, K. (2000). Modelirovanie protsessov kombinirovannogo vydavlivaniya. Mehanika deformirovannogo tverdogo tela i obrabotka metallov davleniem. Tula: Tul'skiy gos. un-t., 21–27.
  23. Levchenko, V. M., Aliiev, I. S., Sukhovirska, L. S. (2020). Modeliuvannia protsesiv vydavliuvannia z rozdilenym oseredkom deformatsiyi. Universitetskaya nauka – 2020: Mezhdunarodnaya nauchno-tehnicheskaya konferentsiya: tezisy dokladov. Vol. 1: fakul'tety: metallurgicheskiy, energeticheskiy GVUZ «PGTU». Mariupol': PGTU, 80–81.
  24. Shestakov, N. A. (1998). Energeticheskie metody rascheta protsessov obrabotki metallov davleniem. Moscow: MGIU, 125.
  25. Stepanskiy, L. G. (1979). Raschety protsessov obrabotki metallov davleniem. Moscow: Mashinostroenie, 217.
  26. Chudakov, P. D. (1992). Verhnyaya otsenka moshchnosti plasticheskoy deformatsii s ispol'zovaniem minimiziruyushchey funktsii. Izvestiya vuzov. Mashinostroenie, 9, 13–15.
  27. Filippov, Yu. K., Ignatenko, V. N., Golovina, Z. S. et. al. (2011). Teoreticheskoe issledovanie kombinirovannogo protsessa radial'nogo i obratnogo vydavlivaniya v konicheskoy matritse. Kuznechno-shtampovochnoe proizvodstvo. Obrabotka materialov davleniem, 7, 3–7.

Downloads

Published

2020-10-31

How to Cite

Hrudkina, N., Aliieva, L., Markov, O., Malii, K., Sukhovirska, L., & Kuznetsov, M. (2020). Predicting the shape formation of parts with a flange and an axial protrusion in the process of combined aligned radial-direct extrusion. Eastern-European Journal of Enterprise Technologies, 5(1 (107), 110–117. https://doi.org/10.15587/1729-4061.2020.212018

Issue

Section

Engineering technological systems