Determining the regime parameters for the surface cleaning of post-consumer wood by a needle milling tool

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.212484

Keywords:

post-consumer wood, wood processing, wood science and technology, needle milling tools, wood residues, waste recycling

Abstract

This paper addresses the identified issue of the inefficient use of post-consumer wood (PCW) in the technological wood processing due to its surface contamination. An option to resolve this issue by cleaning PCW in a mechanized manner has been proposed, specifically by using a needle milling tool and selecting the tension value and feed rate. The impact of the tension of needle milling tools before processing on the cleaning depth of the contaminated surfaces of workpieces made from the PCW has been determined. The constructed model of the contact between a needle milling tool and the contaminated PCW surface has made it possible to describe the essence of the cleaning technique involving this tool. It was found that the depth of the layer removed by the needle milling tool’s wire is reduced in proportion to an increase in the distance before cutting is completed. A nomogram has been built to determine a change in the front angle depending on the needle milling tool’s tension value. Knowing the front angle at a certain point of the needle touch on the contact arc enables determining the thickness of cleaning, which is important for practical application, specifically, at a tension of 4.5 mm the thickness of the removed material can equal 3.46 mm. An adequate regression model was derived, the analysis of the coefficients of which showed a significant impact of tension (+0.895) on the depth of cleaning over the feed speed (+0.256). The devised model makes it possible to forecast the thickness of the removed layer to ensure the required cleanliness of the PCW wooden. Practical recommendations on the operational modes of a needle milling machine have been formulated: the feed rate should equal 10‒12 m/min, the tension ‒ 0.5–5.0 mm, which could ensure, depending on the material’s type, hardness, and the kind of PCW surface contamination, the removal of the surface layer with a thickness of 0.4–4.0 mm. A rational tension of the needle milling tool of 2.5 mm has been proposed for industrial application, which ensures the cleaning depth of contaminated surfaces within the range of 1.8–2.2 mm

Author Biographies

Serhiy Gayda, National Forestry University of Ukraine Henerala Chuprynky str., 103, Lviv, Ukraine, 79057

Doctor of Technical Sciences, Associate Professor

Department of Technology of Furniture and Wooden Products

Institute of Woodworking, Computer Technology and Design

Orest Kiyko, National Forestry University of Ukraine Henerala Chuprynky str., 103, Lviv, Ukraine, 79057

Doctor of Technical Sciences, Professor

Department of Technology of Furniture and Wooden Products

Institute of Woodworking, Computer Technology and Design

References

  1. Cichy, W., Pawłowski, J. (2009). Combustion of solid recovered fuels made from post-consumer wood waste in a power installation of low power. Drewno, 52 (182), 25–63. Available at: http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-article-BAT8-0015-0003
  2. Ratajczak, E., Szostak, A., Bidzińska, G., Leszczyszyn, E. (2018). Market in wood by-products in Poland and their flows in the wood sector. Drewno, 61 (202), 5–20. doi: http://doi.org/10.12841/wood.1644-3985.301.05
  3. Ratajczak, E., Szostak, A., Bidzińska, G., Herbeć, M. (2017). Potential resources of post-consumer wood waste in Poland. Journal of Material Cycles and Waste Management, 20 (1), 402–413. doi: https://doi.org/10.1007/s10163-017-0593-5
  4. Saal, U., Weimar, H., Mantau, U. (2017). Wood Processing Residues. Biorefineries, 27–41. doi: https://doi.org/10.1007/10_2016_69
  5. Walkowiak, M., Cichy, W. (2010). Recykling and disposal of used wood and wood residnes. Drewno, 53 (183), 135–138. Available at: http://drewno-wood.pl/pobierz-122
  6. Haida, S. V. (2011). Vzhyvana derevyna – dodatkovyi resurs syrovyny. Forestry, Forest, Paper, and Woodworking Industry, 37.1, 238–244. Available at: https://publons.com/publon/29740513/
  7. Gayda, S. V. (2013). Technologies and recommendations on the utilization of post-consumer wood in woodworking industry. Forestry, Forest, Paper, and Woodworking Industry, 39.1, 48–67. Available at: https://drive.google.com/file/d/0B3NnbZD66AZPVlVvUmpQblZWSnc/view
  8. Lykidis, C., Grigoriou, A. (2011). Quality characteristics of hydrothermally recycled particleboards using various wood recovery parameters. International Wood Products Journal, 2 (1), 38–43. doi: https://doi.org/10.1179/2042645311y.0000000002
  9. Gayda, S. V. (2016). Investigation of shape stability of variously designed blockboards made of post-consumer wood. ProLigno, 12 (1), 22–31. Available at: http://www.proligno.ro/en/articles/2016/1/gayda.pdf
  10. Gayda, S. V. (2014). Preparation methods for processing of post-consumer wood (PCW) needle-milling and brushing machines. Aktual'nye problemy lesnogo kompleksa, 40, 65–69. Available at: http://www.science-bsea.bgita.ru/2014/les_komp_2014/gaida_sposob.htm
  11. Gayda, S. V., Kiyko, O. A. (2013). Tehnologiya ochistki vtorichno ispol'zuemoy drevesiny iglofrezernymi stankami. Aktual'nye problemy i perspektivy razvitiya lesopromyshlennogo kompleksa: materialy ІІ mezhdunar. nauch.-tehnich. konf. Kostroma: Izd-vo KGTU, 36–39. Available at: https://www.elibrary.ru/item.asp?id=21734294
  12. Gayda, S. (2016). Technological approaches to cleaning of surface of post-consumer wood (PCW) of needle-milling tools. Visnyk Kharkivskoho natsionalnoho tekhnichnoho universytetu silskoho hospodarstva imeni Petra Vasylenka, 178, 3–11. Available at: http://nbuv.gov.ua/UJRN/Vkhdtusg_2016_178_3
  13. Hayda, S., Kiyko, O. (2018). Shape stability as a quality criterion for PcW-made blockboards. Proceedings of the Forestry Academy of Sciences of Ukraine, 17, 185–192. doi: https://doi.org/10.15421/411834
  14. Lykidis, C., Nikolakakos, M., Sakellariou, E., Birbilis, D. (2015). Assessment of a modification to the Brinell method for determining solid wood hardness. Materials and Structures, 49 (3), 961–967. doi: https://doi.org/10.1617/s11527-015-0551-4
  15. Lachowicz, H., Wróblewska, H., Wojtan, R., Sajdak, M. (2019). The effect of tree age on the chemical composition of the wood of silver birch (Betula pendula Roth.) in Poland. Wood Science and Technology, 53 (5), 1135–1155. doi: https://doi.org/10.1007/s00226-019-01121-z
  16. Barshay, I. L., Fel'dshteyn, E. E., Birich, A. V., Goncharov, S. P. (2009). Modelirovanie formirovaniya kachestva poverhnosti zagotovok iz chugunov pri iglofrezerovanii. Vestnik Belorusskogo natsional'nogo tehnicheskogo universiteta, 5, 31–37. Available at: https://rep.bntu.by/bitstream/handle/data/2340/31-37.pdf?sequence=1&isAllowed=y
  17. SHeleg, V. K., Fel'dshteyn, E. E., Barshay, I. L. (2009). Formirovanie kachestva poverhnosti i ekspluatatsionnyh harakteristik detaley pri iglofrezerovanii i kombinirovannoy obrabotke iglofrezirovaniem i poverhnostnym plasticheskim deformirovaniem. Minsk: BNTU, 231.
  18. Barshay, I. L., Glubokiy, A. S. (2013). Modelirovanie i optimizatsiya formirovaniya geometricheskoy struktury poverhnosti detaley iz stali pri iglofrezerovanii. Trudy BGTU, 2, 174–176. Available at: https://elib.belstu.by/bitstream/123456789/2804/1/55.pdf
  19. Barshay, I. L., Fel'dshteyn, E. E., Goncharov, S. P. (2007). Formirovanie topografii poverhnosti detaley iz stali 12HN3A pri iglofrezerovanii. Vestnik BNTU, 4, 9–15. Available at: https://cyberleninka.ru/article/n/formirovanie-topografii-poverhnosti-detaley-iz-stali-12hn3a-pri-iglofrezerovanii/viewer
  20. Kryazhev, Yu. A., Kryazhev, A. Yu., Ognevenko, E. S. (2012). Povyshenie kachestva obrabatyvaemoy poverhnosti pri iglofrezerovanii na osnove nauchno-teoreticheskih i prakticheskih issledovaniy protsessa rezaniya. Polzunovskiy vestnik, 1/1, 168–172. Available at: http://elib.altstu.ru/journals/Files/pv2012_01_1/pdf/168krajev.pdf
  21. Evdokimov, V. D., Klimenko, L. P., Evdokimova, A. N. (2005). Rekomendatsii po obrabotke poverhnostey shchetkami. Tehnologiya uprochneniya mashinostroitel'nyh materialov. Odessa-Nikolaev: Izd-vo NGGU im. Petra Mogily, 268–270. Available at: http://lib.chdu.edu.ua/pdf/monograf/2/57.pdf
  22. Tumash, A. M. (2011). Study of the needle-cutter contact zone with the machined surface. Vestnik Irkutskogo gosudarstvennogo tehnicheskogo universiteta, 6 (53), 13–16. Available at: https://cyberleninka.ru/article/n/issledovanie-zony-kontakta-iglofrezy-s-obrabatyvaemoy-poverhnostyu/viewer
  23. Tumash, A. M., Korzun, N. L. (2015). One of methods to investigate needle cutting. Izvestiya vuzov. Investitsii. Stroitel'stvo. Nedvizhimost', 3 (14), 93–102. Available at: https://cyberleninka.ru/article/n/odin-iz-metodov-issledovaniy-iglofrezerovaniya/viewer
  24. Milyanych, A. R. (2014). The Determination of the Maximum Stiffness in an Elastic Contact between the Elements of a Needle Milling Cutter and the Surface of a Congealed Pitch. Naukovyi visnyk NLTU Ukrainy, 24.4, 358–365. Available at: https://nv.nltu.edu.ua/Archive/2014/24_4/358_Mil.pdf
  25. Zharkov, N. I., Gil', V. I. (2013). Primenenie iglofrezernogo instrumenta dlya okorki kruglyh lesomaterialov. Trudy BGTU, 2, 234–235. Available at: https://e.lanbook.com/reader/journalArticle/289942/#1
  26. Maksymiv, V. M., Kiyko, O. A., Kryshtapovych, V. I., Matsyshyn, Ya. V. (2006). Repeated unseal shield details old frame corps furniture. Naukovyi visnyk NLTU Ukrainy, 16.7, 140–143. Available at: https://nv.nltu.edu.ua/Archive/2006/16_7/140_Maksymiw_16_7.pdf

Downloads

Published

2020-10-31

How to Cite

Gayda, S., & Kiyko, O. (2020). Determining the regime parameters for the surface cleaning of post-consumer wood by a needle milling tool. Eastern-European Journal of Enterprise Technologies, 5(1 (107), 89–97. https://doi.org/10.15587/1729-4061.2020.212484

Issue

Section

Engineering technological systems