Identifying changes in the milking rubber of milking machines during testing and under industrial conditions

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.212772

Keywords:

milking rubber, rubber characteristics, rubber parameters, development, shell deformation

Abstract

Milking rubber is the only part of the milking equipment that comes into direct contact with the cow’s teats. The task is to establish the high-quality technical and technological characteristics of the rubber liners for milking machines. It has been established that milking rubber after 600‒650 hours of operation acquires significant deflection in the range of 5.5±0.03–3.7±0.04 mm while a teat cup deformation varies within 1.3±0.02–3.5±0.05 mm. A positive correlation dependence of the milking rubber elasticity on the deformation of its teat cup (r=+0.948) has been found.

The method of passing the electric discharge was used to assess the readiness of milking rubber for use, whereby a variation coefficient of υ˂10 % was determined for the milking rubber DD 00.041A AO «Bratslav», which makes it possible to estimate the product quality.

It was found that the change in the mass and volume of milking rubber over 72 hours of its treatment with the liquid SZHR-3 at t=150 °C exceeds the indicators obtained in contact with the liquid Skydrol LD-4 by more than 2.5 times. A positive correlation dependence of the milking rubber mass on its volume (r=+0.965) has been established.

It was found that at a rubber tension in the range of 0 to 90 N the duration of the deformation loss experienced by the milking rubber shell was not long; it is 0.05‒0.06 s. With an increase in the service life of milking rubber to 4 months, there is a decrease in its tension, from 56‒60 N to 43‒45 N, which adversely affects the maximum speed of milk yield – it decreases by 1.5 times.

A positive correlation dependence of the milking rubber service life on the level of its bacterial insemination (r=+0.960) has been established

Author Biographies

Andriy Paliy, Kharkiv Petro Vasylenko National Technical University of Agriculture Alchevskih str., 44, Kharkiv, Ukraine, 61002

Doctor of Agricultural Sciences, Associate Professor

Department of Technical Systems and Animal Husbandry Technologies

Artem Naumenko, Kharkiv Petro Vasylenko National Technical University of Agriculture Alchevskih str., 44, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of Construction and Civil Engineering

Anatoliy Paliy, National Scientific Center «Institute of Experimental and Clinical Veterinary Medicine» Pushkinska str., 83, Kharkiv, Ukraine, 61023

Doctor of Veterinary Sciences, Professor

Laboratory of Veterinary Sanitation and Parasitology

Svitlana Zolotaryova, Kharkiv national agrarian University named after V. V. Dokuchaev p/o “Dokuchaevske-2”, Kharkiv dist., Kharkiv reg., Ukraine, 62483

PhD, Associate Professor

Department of Technology for Production and Processing of Livestock Products

Andrey Zolotarev, Institute of Animal Science of the National Academy of Agrarian Sciences of Ukraine Tvarynnykiv str., 1-A, Kharkiv, Ukraine, 61026

Researcher

Department of Nutrition, Physiology of Nutrition of Farm Animals and Feed Production

Ludmyla Tarasenko, Odessa State Agrarian University Kanatna str., 99, Odessa, Ukraine, 65039

Doctor of Veterinary Sciences, Associate Professor

Department of Veterinary Hygiene, Sanitary and Expertise

Oleksandr Nechyporenko, Sumy National Agrarian University Herasym Kondratiev str., 160, Sumy, Ukraine, 40021

PhD, Associate Professor

Department of Therapy, Pharmacology, Clinical Diagnostics and Chemistry

Larysa Ulko, Sumy National Agrarian University Herasym Kondratiev str., 160, Sumy, Ukraine, 40021

Doctor of Veterinary Sciences, Professor

Department of Therapy, Pharmacology, Clinical Diagnostics and Chemistry

Oleksandr Kalashnyk, Sumy National Agrarian University Herasym Kondratiev str., 160, Sumy, Ukraine, 40021

PhD, Associate Professor

Department of Anatomy, Normal and Pathological Physiology

Yurii Musiienko, Sumy National Agrarian University Herasym Kondratiev str., 160, Sumy, Ukraine, 40021

PhD, Associate Professor

Department of Obstetrics and Surgery

References

  1. Nanka, O., Shigimaga, V., Paliy, A., Sementsov, V., Paliy, A. (2018). Development of the system to control milk acidity in the milk pipeline of a milking robot. Eastern-European Journal of Enterprise Technologies, 3 (9 (93)), 27–33. doi: https://doi.org/10.15587/1729-4061.2018.133159
  2. Martin, L. M., Stöcker, C., Sauerwein, H., Büscher, W., Müller, U. (2018). Evaluation of inner teat morphology by using high-resolution ultrasound: Changes due to milking and establishment of measurement traits of the distal teat canal. Journal of Dairy Science, 101 (9), 8417–8428. doi: https://doi.org/10.3168/jds.2018-14500
  3. Paliy, A., Nanka, A., Marchenko, M., Bredykhin, V., Paliy, A., Negreba, J. et. al. (2020). Establishing changes in the technical parameters of nipple rubber for milking machines and their impact on operational characteristics. Eastern-European Journal of Enterprise Technologies, 2 (1 (104)), 78–87. doi: https://doi.org/10.15587/1729-4061.2020.200635
  4. Gleeson, D. E., O’Callaghan, E. J., Rath, M. V. (2004). Effect of liner design, pulsator setting, and vacuum level on bovine teat tissue changes and milking characteristics as measured by ultrasonography. Irish Veterinary Journal, 57 (5), 289. doi: https://doi.org/10.1186/2046-0481-57-5-289
  5. Gálik, R., Boďo, Š., Staroňová, L. (2015). Monitoring the inner surface of teat cup liners made from different materials. Research in Agricultural Engineering, 61, S74–S78. doi: https://doi.org/10.17221/50/2015-rae
  6. Palii, A. P. (2017). Innovations in determining the quality of liners of milking machines. Tavriyskyi naukovyi visnyk, 97, 160–164.
  7. Odorčić, M., Rasmussen, M. D., Paulrud, C. O., Bruckmaier, R. M. (2019). Review: Milking machine settings, teat condition and milking efficiency in dairy cows. Animal, 13 (S1), s94–s99. doi: https://doi.org/10.1017/s1751731119000417
  8. Fahim, A., Kamboj, M., Sirohi, A., Bhakat, M., Prasad, S., Gupta, R. (2018). Milking machine induced teat reactions in crossbred cows milked in automated herringbone milking parlour. Indian Journal of Animal Science, 88 (12), 1412–1415.
  9. Penry, J. F., Crump, P. M., Ruegg, P. L., Reinemann, D. J. (2017). Short communication: Cow- and quarter-level milking indicators and their associations with clinical mastitis in an automatic milking system. Journal of Dairy Science, 100 (11), 9267–9272. doi: https://doi.org/10.3168/jds.2017-12839
  10. Dmytriv, V., Dmytriv, I., Lavryk, Y., Horodeckyy, I. (2018). Models of adaptation of the milking machines systems. BIO Web of Conferences, 10, 02004. doi: https://doi.org/10.1051/bioconf/20181002004
  11. Paliy, A. P. (2016). Issledovanie doil'noy reziny na osnove primeneniya innovatsionnyh tehnologiy. Motrol. Commission of Motorization and Energetics in Agriculture. An international journal on operation of farm and agri-food industry machinery, 18 (7), 9–13.
  12. Neuheuser, A.-L., Belo, C., Bruckmaier, R. M. (2017). Technical note: Reduced pulsation chamber vacuum at normal pulsation rate and ratio provides adequate prestimulation to induce oxytocin release and milk ejection while simultaneous milk flow is prevented. Journal of Dairy Science, 100 (10), 8609–8613. doi: https://doi.org/10.3168/jds.2017-12937
  13. Tse, C., Barkema, H. W., DeVries, T. J., Rushen, J., Pajor, E. A. (2018). Impact of automatic milking systems on dairy cattle producers’ reports of milking labour management, milk production and milk quality. Animal, 12 (12), 2649–2656. doi: https://doi.org/10.1017/s1751731118000654
  14. Paliy, A. P., Nanka, O. V., Lutcenko, M. M., Naumenko, O. A., Paliy, A. P. (2018). Influence of dust content in milking rooms on operation modes of milking machine pulsators. Ukrainian Journal of Ecology, 8 (3), 66–70.
  15. Shit, S. C., Shah, P. (2013). A Review on Silicone Rubber. National Academy Science Letters, 36 (4), 355–365. doi: https://doi.org/10.1007/s40009-013-0150-2
  16. Bhakat, C. (2019). A Review on Sub Clinical Mastitis in Dairy Cattle. doi: https://doi.org/10.31220/osf.io/ja7dp
  17. Il’in, V. M., Rezova, A. K. (2015). Styrene Butadiene Rubber: Production Worldwide. International Polymer Science and Technology, 42 (10), 35–44. doi: https://doi.org/10.1177/0307174x1504201008
  18. Dmytriv, V. T. (2015). Adaptive machine milking system. Mechanization in Agriculture. International Scientific: Scientific Applied and Informational Journal, 10, 15–18.
  19. Wieland, M., Virkler, P. D., Borkowski, A. H., Älveby, N., Wood, P., Nydam, D. V. (2018). An observational study investigating the association of ultrasonographically assessed machine milking-induced changes in teat condition and teat-end shape in dairy cows. Animal, 13 (2), 341–348. doi: https://doi.org/10.1017/s1751731118001246
  20. Palii, A. P., Nanka, O. V., Naumenko, O. A., Prudnikov, V. G., Paliy, A. P. (2019). Preconditions for eco-friendly milk production on the modern dairy complexes. Ukrainian Journal of Ecology, 9 (1), 56–62.
  21. Besier, J., Lind, O., Bruckmaier, R. M. (2015). Dynamics of teat-end vacuum during machine milking: types, causes and impacts on teat condition and udder health – a literature review. Journal of Applied Animal Research, 44 (1), 263–272. doi: https://doi.org/10.1080/09712119.2015.1031780
  22. Nørstebø, H., Rachah, A., Dalen, G., Rønningen, O., Whist, A. C., Reksen, O. (2018). Milk-flow data collected routinely in an automatic milking system: an alternative to milking-time testing in the management of teat-end condition? Acta Veterinaria Scandinavica, 60 (1). doi: https://doi.org/10.1186/s13028-018-0356-x
  23. Aliev, E. B. (2010). Study of wear rubber nipple milking machine based theory of aging. Zbirnyk naukovykh prats IMT NAAN “Mekhanizatsiya, ekolohizatsiya ta konvertatsiya biosyrovyny u tvarynnytstvi”, 1 (5, 6), 233–242.
  24. TU 2539-007-76503135-2011. Soskovaya rezina DD 00.041A dlya komplektatsii doil'nyh stakanov. Available at: http://docs.cntd.ru/document/437156326
  25. SOU 74.3-37-273:2005. Tekhnika silskohospodarska. Ustanovky doilni dlia koriv. Metody vyprobuvan. Minahropolityky Ukrainy (2005). Kyiv, 46.
  26. Paliy, A. P. (2015). Innovatsii v issledovanii ekspluatatsionnyh svoystv soskovoy reziny doil'nyh apparatov. Vestnik APK Stavropol'ya, 3 (19), 51–54.
  27. Paliy, A. P. (2015). Innovatsiynyi pidkhid shchodo komplektuvannia doilnykh stakaniv diyikovoiu humoiu. Perspektyvy rozvytku suchasnoi nauky: materialy II mizhnar. nauk.-prakt. konf. Ch. I. Kherson: VD «Helvetyka», 81–83.
  28. GOST 9.030-74. Unified system of corrosion and ageing protection. Vulcanized rubbers. Method of testing of resistance to attack by corrosive media in limp state. Available at: http://docs.cntd.ru/document/1200015025
  29. GOST 9.029-74 (ST SEV 1217-78). Unified system of corrosion and ageing protection. Vulcanized rubbers. Method of testing of resistance to ageing under static deformation of compression. Available at: http://docs.cntd.ru/document/1200015024
  30. GOST 9982-76. Rubber. Determination of stress relaxation in compression. Available at: http://docs.cntd.ru/document/1200018659
  31. Palij, A. (2015). An innovative approach for the identification tension teat cup liners. Tekhnolohiya vyrobnytstva i pererobky produktsiyi tvarynnytstva, 2 (120), 32–35.
  32. GOST 34496-2018. Milking machines and equipment for cows. Test methods. Available at: http://docs.cntd.ru/document/1200168803
  33. DSTU 7357:2013. Moloko ta molochni produkty. Metody mikrobiolohichnoho kontroliuvannia.
  34. Penry, J. F., Upton, J., Leonardi, S., Thompson, P. D., Reinemann, D. J. (2018). A method for assessing teatcup liner performance during the peak milk flow period. Journal of Dairy Science, 101 (1), 649–660. doi: https://doi.org/10.3168/jds.2017-12942
  35. Demba, S., Elsholz, S., Ammon, C., Rose-Meierhöfer, S. (2016). The Usability of a Pressure-Indicating Film to Measure the Teat Load Caused by a Collapsing Liner. Sensors, 16 (10), 1597. doi: https://doi.org/10.3390/s16101597
  36. Paliy, A. P. (2017). System state estimation teat highly productive cows in industrial their use. Visnyk Sumskoho natsionalnoho ahrarnoho universytetu, 5 (1 (31)), 119–123.
  37. Andrews, R. J., Mein, G. A., Brown, M. R. (1988). Improved milking characteristics of teatcups fitted with non-return valves. Journal of Dairy Research, 55 (4), 505–511. doi: https://doi.org/10.1017/s0022029900033276
  38. Xu, Y., Feng, L., Cong, H., Li, P., Liu, F., Song, S., Fan, L. (2020). Preparation of TiO2/Ser filler with ultraviolet resistance and antibacterial effects and its application in SBR/TRR blend rubber. Journal of Rubber Research, 23 (2), 47–55. doi: https://doi.org/10.1007/s42464-020-00035-x
  39. Paliy, A. P. (2016). Modern aspects of operation liner teat cups. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies, 18 (2), 159–162. doi: https://doi.org/10.15421/nvlvet6736
  40. Shkromada, O., Skliar, O., Paliy, A., Ulko, L., Gerun, I., Naumenko, O. et. al. (2019). Development of measures to improve milk quality and safety during production. Eastern-European Journal of Enterprise Technologies, 3 (11 (99)), 30–39. doi: https://doi.org/10.15587/1729-4061.2019.168762
  41. Aliev, E. B., Pokhalchuk, T. A. (2011). Teoretychna otsinka pokaznykiv nadiynosti vakuumnoi systemy doilnoi ustanovky. Naukovyi Visnyk Luhanskoho natsionalnoho ahrarnoho universytetu, 29, 57–66.

Downloads

Published

2020-10-31

How to Cite

Paliy, A., Naumenko, A., Paliy, A., Zolotaryova, S., Zolotarev, A., Tarasenko, L., Nechyporenko, O., Ulko, L., Kalashnyk, O., & Musiienko, Y. (2020). Identifying changes in the milking rubber of milking machines during testing and under industrial conditions. Eastern-European Journal of Enterprise Technologies, 5(1 (107), 127–137. https://doi.org/10.15587/1729-4061.2020.212772

Issue

Section

Engineering technological systems