Development of operational requirements for self-propelled combine-harvesters with the capabilities of mobile energy devices

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.212788

Keywords:

combine-harvester, energy technological device, operational requirements, traction-coupling properties, adapter

Abstract

This paper reports a study into the possibility of using the chassis of combine-harvesters as a mobile energy device. The operational requirements for mobile energy technological devices for general purposes have been developed.

The traction-coupling characteristics of the combine-harvester with an adapter that increases traction force have been investigated.

The theoretical dependences have been derived of the motion speed, the power on a hook, the specific fuel consumption, as well as a factor of loading the wheels of the driven axle, on the traction force on the hook of an energy-technological device.

It is noted that the use of the controlled axle with drive wheels reduces the slippage of the engines of the energy technological device. At the engine slippage level of up to 16 % an energy device, equipped with a driven axle with drive wheels, generates a traction force on the hook of up to 40 kN. Under the conditions of driving the axle by the hydraulic transmission mainline, the motion speed of an energy device decreases by 17.9 %, 28.5 %, 35.9 %, and 49.0 %, respectively, on gears I, II, III, and IV of the drive axle gearbox.

The power on the energy device’s hook is increased due to the corresponding increase in traction effort: on gear III, at a traction effort within 35‒40 kN, the capacity on the hook is 68‒75 kW. Under these conditions, the specific fuel consumption is 430‒460 g/kWh at the device’s motion speed within 1.9‒1.95 m/s.

The limits for changing the load factor on the wheels of the driven axle (not less than 0.2) have been determined, at which the requirements for control over an energy device are met.

The specific fuel consumption (540‒580 g/kWh) by a combine-harvester with a throughput capacity of 9‒11 kg/s has been established, when using it as an energy technological device for general purposes at a motion speed of 1.7–2.1 m/s and a traction effort on the hook of 24‒33 kN

Author Biographies

Viktor Sheichenko, Poltava State Agrarian Academy Skovorody str., 1/3, Poltava, Ukraine, 36003

Doctor of Technical Sciences, Senior Researcher

Department of Technology and Means of Mechanization of Agricultural Production

Alvian Kuzmych, National Scientific Center "Institute of Agriculture Engineering and Electrification" Vokzalna str., 11, Hlevakha, Vasylkiv dist., Kyiv reg., Ukraine, 08631

PhD

Department of Advanced Technologies and Technical Means for Harvesting, Processing and Storage of Grain and Oilseeds Crops

Viktor Niedoviesov, National Scientific Center "Institute of Agriculture Engineering and Electrification" Vokzalna str., 11, Hlevakha, Vasylkiv dist., Kyiv reg., Ukraine, 08631

PhD, Senior Researcher

Department of Advanced Technologies and Technical Means for Harvesting, Processing and Storage of Grain and Oilseeds Crops

Mykhailo Aneliak, National Scientific Center "Institute of Agriculture Engineering and Electrification" Vokzalna str., 11, Hlevakha, Vasylkiv dist., Kyiv reg., Ukraine, 08631

PhD, Senior Researcher

Department of Advanced Technologies and Technical Means for Harvesting, Processing and Storage of Grain and Oilseeds Crops

Oleksandra Bilovod, Poltava State Agrarian Academy Skovorody str., 1/3, Poltava, Ukraine, 36003

PhD, Associate Professor

Department of Industrial Engineering

Vitaliy Shevchuk, Uman National University of Horticulture Institutska str., 1, Uman, Ukraine, 20305

PhD, Senior Researcher

Department of Agricultural Engineering

Tetiana Kutkovetska, Uman National University of Horticulture Institutska str., 1, Uman, Ukraine, 20305

PhD

Department of Agricultural Engineering

Mykola Shpilka, Poltava State Agrarian Academy Skovorody str., 1/3, Poltava, Ukraine, 36003

PhD, Associate Professor

Department of Life Safety

References

  1. Ksenevich, I. P., Yaikevich, V. V. (1987). O perspektivah razvitiya agregatnoy unifikatsii i sozdaniya modul'nyh energetncheskih sredstv. Traktory i sel'skohozyaystvennye mashiny, 12, 6–11.
  2. Slutskiy, B. M. (2008). Taganrogskiy kombaynoviy zavod. Taganrog. Entsiklopediya. Taganrog: Anton, 692.
  3. Shkarivskyi, H. V. (2016). Komponuvalna skhema samokhidnoho shasi – realiyi konstruktsiyi i napriamy vdoskonalennia. Naukovyi visnyk Natsionalnoho universytetu bioresursiv i pryrodokorystuvannia Ukrainy. Seriya: Tekhnika ta enerhetyka APK, 241, 249–258. Available at: http://nbuv.gov.ua/UJRN/nvnau_tech_2016_241_35
  4. Elorza, P., Izard, M., Krus, A., Iglesias, B. (2018). Claas Xerion 4000 y olvídate de la roca madre. "Vida Rural", v. MAQ, 8–19. Available at: http://oa.upm.es/51322/
  5. Pohorilyi, L., Koval, S. (2006). Kontseptsiya pryskorenoho rozviazannia problemy zabezpechennia silskohospodarskoho vyrobnytstva Ukrainy zernozbyralnoiu tekhnikoiu. Enerhooshchadni tekhnolohiyi v efektyvnomu roslynnytstvi. Tematychna dobirka naukovo-tekhnichnykh prats spivrobitnykiv UkrNDIPVT im. L. Pohoriloho, 6–11.
  6. Matukhno, N. V., Niedoviesov, V. I. (2016). Stratehiyi tekhnichnoi polityky v zabezpechenni zbyrannia khlibiv v Uukraini vitchyznianymy zernozbyralnymy kombainamy. Machinery and Energetics, 241, 358–371. Available at: http://journals.nubip.edu.ua/index.php/Tekhnica/article/view/7035
  7. Zhalnin, E. V. (2004). Strategiya perspektivnogo razvitiya mehanizatsii uborki zernovyh kul'tur. Traktory i sel'skohozyaystvennye mashiny, 9, 3–16. Available at: https://www.elibrary.ru/item.asp?id=23904783
  8. Burlaka, O, Yakhin, S., Dudnik, V., Ivankova, O., Drozchana, O. (2019). Multi-criterian selection of modern grain-based combines. Analytical aspects. Visnyk KhNTUSH. Tekhnichni nauky, 199, 5–20. Available at: http://dspace.pdaa.edu.ua:8080/handle/123456789/4966
  9. Nadykto, V. (2017). Perspektyvy traktornoi enerhetyky ta mashynobuduvannia v Ukraini (u poriadku obhovorennia). Tekhnika i tekhnolohiyi APK, 4, 11–14. Available at: http://nbuv.gov.ua/UJRN/Titapk_2017_4_5
  10. Bulgakov, V., Nadykto, V., Kyurchev, S., Nesvidomin, V., Ivanovs, S., Olt, J. (2019). Theoretical background for increasing grip properties of wheeled tractors based on their rational ballasting. Agraarteadus: Journal of Agricultural Science, 30 (2), 78–84. doi: https://doi.org/10.15159/jas.19.07
  11. Chen, S., Zhou, Y., Tang, Z., Lu, S. (2020). Modal vibration response of rice combine harvester frame under multi-source excitation. Biosystems Engineering, 194, 177–195. doi: https://doi.org/10.1016/j.biosystemseng.2020.04.002
  12. Bevly, D. M., Gerdes, J. C., Parkinson, B. W. (2002). A New Yaw Dynamic Model for Improved High Speed Control of a Farm Tractor. Journal of Dynamic Systems, Measurement, and Control, 124 (4), 659–667. doi: https://doi.org/10.1115/1.1515329
  13. Zhalnin, E. V., Godzhaev, Z. A., Florentsev, S. N. (2017). Conceptual principles of intelligent agricultural machines in the case of combine harvester. Agricultural Machinery and Technologies, 6, 9–16. doi: https://doi.org/10.22314/2073-7599-2017-6-9-16
  14. Lipkovich, E. I., Trubilin, Ye. I., Maslov, G. G. (2010). A grain crops harvesting technology combining the post-harvest operations. Traktory i sel'hozmashiny, 12, 48–49. Available at: https://www.elibrary.ru/item.asp?id=15591027
  15. Maslov, G. G., Yudina, E. M., Palaguta, A. A., Malashikhin, N. V. (2017). Innovative-technological prerequisites of grain competitiveness improvement. Polythematic Online Scientific Journal of Kuban State Agrarian University, 132 (08). doi: https://doi.org/10.21515/1990-4665-132-020
  16. Webster, K (2011). Single-pass corn stover harvest system productivity and cost analysis. Iowa State University, 149. doi: https://doi.org/10.31274/etd-180810-2027
  17. Pankov, A. (2015). The relevance and prospects of creation of modular machines for growing crops. Konstruiuvannia, vyrobnytstvo ta ekspluatatsiya silskohospodarskykh mashyn, 45, 239–246. Available at: http://dspace.kntu.kr.ua/jspui/bitstream/123456789/2296/1/37.pdf
  18. Sharipov, V. M. (2009). Konstruirovanie i raschet traktorov. Moscow: Mashinostroenie, 752.
  19. Beshun, O. A., Shkarivskyi, H. V., Lavrinenko, O. T. (2016). Tiahovo-dynamichni rozrakhunky mobilnykh enerhetychnykh zasobiv. Kyiv: Komprynt, 153.

Downloads

Published

2020-10-31

How to Cite

Sheichenko, V., Kuzmych, A., Niedoviesov, V., Aneliak, M., Bilovod, O., Shevchuk, V., Kutkovetska, T., & Shpilka, M. (2020). Development of operational requirements for self-propelled combine-harvesters with the capabilities of mobile energy devices. Eastern-European Journal of Enterprise Technologies, 5(1 (107), 60–70. https://doi.org/10.15587/1729-4061.2020.212788

Issue

Section

Engineering technological systems