Improving the efficiency of the process of continuous flow mixing of bulk components
DOI:
https://doi.org/10.15587/1729-4061.2020.216409Keywords:
loose material, continuous flow mixing, numerical modeling, working body, structural and technological parametersAbstract
Modern industrial and agricultural processing almost always implies mixing loose material on a variety of equipment. At present, there are known mixers of various designs, principles, and techniques to implement the technological process. One of the existing mixing techniques is a continuous flow method that has significant advantages – reducing energy intensity while improving the quality of the process of the mixture continuous preparation and distribution. However, the continuous-flow technique of mixing loose materials has been paid little attention to. This prevents the application of well-known analytical models of the process of moving loose components to substantiate the structural and technological parameters for the working bodies of a continuous flow mixer.
The result of the analytical study of the continuous-flow mixing technique is the constructed system of differential equations of the movement of a bulk material’s components in the airflow under the influence of the working bodies’ surfaces of the designed mixer. The reported system of differential equations underlies the physical-mathematical apparatus for the numerical modeling of the specified process employing the software package StarCCM+ (USA).
The result of the numerical modeling is the established dependences of the dynamics of change in the concentration of components in the mixture and the homogeneity of the mixture in the zones of a continuous flow mixer depending on the study factors (the frequency of rotations, the angle of attack of the blade mixer, the performance of feeding the first and second components).
The optimal structural and technological parameters for a continuous flow mixer involved in the process of mixing a two-component feed mixture (stem and concentrated feed) have been determined, at which the uniformity of the resulting forage mixture is maximalReferences
- Fazekas, S. (2007). Distinct Element Simulations of Granular Materials. Budapest, 144. Available at: https://repozitorium.omikk.bme.hu/bitstream/handle/10890/602/ertekezes.pdf?sequence=1&isAllowed=y
- Holdich, R. (2002). Fundamentals of Particle Technology. Midland Information Technology and Publishing, 173. Available at: https://www.researchgate.net/publication/255700879_Fundamentals_of_Particle_Technology
- Alenzi, A. F. (2012). Modeling of consolidation and flow of granular material under varying conditions. University of Pittsburgh, 144. Available at: http://d-scholarship.pitt.edu/id/eprint/13172
- Jahani, M., Farzanegan, A., Noaparast, M. (2015). Investigation of screening performance of banana screens using LIGGGHTS DEM solver. Powder Technology, 283, 32–47. doi: https://doi.org/10.1016/j.powtec.2015.05.016
- Abbaspour-Fard, M. H. (2000). Discrete element modelling of the dynamic behaviour of non-spherical particulate materials. University of Newcastle upon Tyne, 275. Available at: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.324869
- Naeini, M. S. E. (2011). Discrete Element Modeling of Granular Flows in Vibrationally-Fluidized Beds. University of Toronto, 130. Available at: https://tspace.library.utoronto.ca/bitstream/1807/29716/17/EmamiNaeini_MohammadSaeid_201106_PhD_thesis.pdf
- Kol'man-Ivanov, E. E., Gusev, Yu. I., Karasev, I. N. et. al. (1985) Konstruirovanie i raschet mashin himicheskih proizvodstv. Moscow: Mashinostroenie, 228–254. Available at: https://www.twirpx.com/file/149553/
- Verloka, I. I., Kapranova, A. B., Lebedev, A. E. (2014). Sovremennye gravitatsionnye ustroystva nepreryvnogo deystviya dlya smeshivaniya sypuchih komponentov. Inzhenerniy vestnik Dona, 4. Available at: https://cyberleninka.ru/article/n/sovremennye-gravitatsionnye-ustroystva-nepreryvnogo-deystviya-dlya-smeshivaniya-sypuchih-komponentov
- Mizonov, V. E., Balagurov I. A. (2016). Teoreticheskie osnovy modelirovaniya i rascheta formirovaniya mnogokomponentnyh smesey raznorodnyh dispersnyh materialov. Ivanovo: IGEU, 108.
- Makarov, Yu. I. (1973). Apparaty dlya smesheniya sypuchih materialov. Moscow: Mashinostroenie, 216. Available at: https://www.twirpx.com/file/1317803/
- Selivanov, Yu. T., Pershin, V. F. (2004). Raschet i proektirovanie tsirkulyatsionnyh smesiteley sypuchih materialov bez vnutrennih peremeshivayushchih ustroystv. Moscow: «Izdatel'stvo mashinostroenie-1», 120. Available at: https://www.tstu.ru/book/elib/pdf/2004/selivan.pdf
- Shubyn, Y. N., Svyrydov, M. M., Tarov, V. P. (2005). Tekhnolohicheskye mashiny i oborudovanye. Sypuchie materialy i ikh svoistva. Tambov: Yzd-vo Tamb. hos. tekhn. un-ta, 76.
- Pershyn, V. F., Odnolko, V. H., Pershyna, S. V. (2009). Pererabotka sыpuchykh materyalov v mashynakh barabannoho typa. Moscow: Mashynostroenye, 220.
- Weinekötter, R. (2016). Mixing of Solid Materials. Production, Handling and Characterization of Particulate Materials, 291–326. doi: https://doi.org/10.1007/978-3-319-20949-4_9
- Delaney, G. W., Cleary, P. W., Hilden, M., Morrison, R. D. (2009). Validation of dem predictions of granular flow and separation efficiency for a horizontal laboratory scale wire mesh screen. Seventh International Conference on CFD in the Minerals and Process Industries CSIRO. Melbourne. Available at: https://www.researchgate.net/publication/43517493
- Herrmann, H. J. (1993). Molecular dynamics simulations of granular materials. International Journal of Modern Physics C, 04 (02), 309–316. doi: https://doi.org/10.1142/s012918319300032x
- Ferrara, G., Preti, U., Schena, G. D. (1987). Computer-aided Use of a Screening Process Model. APCOM 87. Proceeding of the Twentieth International Symposium on the Application of Computers and Mathematics in the Mineral Industries. Vol. 2: Metallurgy. Johannesburg, 153–166. Available at: https://www.saimm.co.za/Conferences/Apcom87Metallurgy/153-Ferrara.pdf
- Dinesh, J. (2009). Modelling and Simulation of a Single Particle in Laminar Flow Regime of a Newtonian Liquid. Excerpt from the Proceedings of the COMSOL Conference. Bangalore. Available at: https://www.comsol.com/paper/download/46302/Jamnani.pdf
- Kanehl, P. (2010). Particle model of the Magnus effect. Mathematisch-Naturwissenschaftliche Fakultät Ernst-Moritz-Arndt-Universität Greifswald, 35. Available at: https://physik.uni-greifswald.de/storages/uni-greifswald/fakultaet/mnf/physik/ag_schneider/Arbeiten/philippBA.pdf
- Chen, N. H. (1979). An Explicit Equation for Friction Factor in Pipe. Industrial & Engineering Chemistry Fundamentals, 18 (3), 296–297. doi: https://doi.org/10.1021/i160071a019
- Zhang, S., Kuwabara, S., Suzuki, T., Kawano, Y., Morita, K., Fukuda, K. (2009). Simulation of solid–fluid mixture flow using moving particle methods. Journal of Computational Physics, 228 (7), 2552–2565. doi: https://doi.org/10.1016/j.jcp.2008.12.005
- Di Renzo, A., Di Maio, F. P. (2004). Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes. Chemical Engineering Science, 59 (3), 525–541. doi: https://doi.org/10.1016/j.ces.2003.09.037
- Broas, P. (2001). Advantages and problems of CAVE-visualisation for design purposes. VTT Technical Research Centre of Finland, 73–81.
- Han, S. W., Lee, W. J., Lee, S. J. (2012). Study on the Particle Removal Efficiency of Multi Inner Stage Cyclone by CFD Simulation. World Academy of Science, Engineering and Technology, 6 (7), 386–390.
- Satish, G., Ashok Kumar, K., Vara Prasad, V., Pasha, Sk. M. (2013). Comparison of flow analysis of a sudden and gradual change of pipe diameter using fluent software. IJRET: International Journal of Research in Engineering and Technology, 2 (12), 41–45. Available at: https://www.researchgate.net/publication/334761930_COMPARISON_OF_FLOW_ANALYSIS_OF_A_SUDDEN_AND_GRADUAL_CHANGE_OF_PIPE_DIAMETER_USING_FLUENT_SOFTWARE
- Iguchi, M., Ilegbusi, O. J. (2014). Basic Transport Phenomena in Materials Engineering. Springer. doi: https://doi.org/10.1007/978-4-431-54020-5
- Ivanets, V. N., Bakin, I. A., Belousov, G. N. (2002). Entropiyniy podhod k otsenke protsessa smeshivaniya sypuchih materialov. Hranenie i perarabotka sel'skohozyaystvennogo syr'ya, 11, 16–18.
- Bakin, I. A., Belousov, G. N., Sablinskiy, A. I. (2001). Modelirovanie protsessa smeshivaniya entropiyno – informatsionnym metodom. Novye tehnologii v nauchnyh issledovaniyah v obrazovanii. Materialy Vserossiyskoy nauchno-prakticheskoy konferentsii. Ch. 1. Yurga.
- Aliev, E. B., Bandura, V. M., Pryshliak, V. M., Yaropud, V. M., Trukhanska, O. O. (2018). Modeling of mechanical and technological processes of the agricultural industry. INMATEH, 54 (1), 95–104. Available at: http://aliev.in.ua/doc/stat/2018/stat_2.pdf
- Shevchenko, I. A., Aliev, E. B. (2018). Research on the photoelectronic separator seed supply block for oil crops. INMATEH, 54 (1), 129–138. Available at: http://aliev.in.ua/doc/stat/2018/stat_3.pdf
- Aliev, E. B., Yaropud, V. M., Dudin, V. Yr., Pryshliak, V. M., Pryshliak, N. V., Ivlev, V. V. (2018). Research on sunflower seeds separation by airflow. INMATEH, 56 (3), 119–128. Available at: http://aliev.in.ua/doc/stat/2018/stat_15.pdf
- Aliiev, E., Gavrilchenko, A., Tesliuk, H., Tolstenko, A., Koshul’ko, V. (2019). Improvement of the sunflower seed separation process efficiency on the vibrating surface. Acta Periodica Technologica, 50, 12–22. doi: https://doi.org/10.2298/apt1950012a
- Aliev, E., Dudin, V., Gavrilchenko, A., Ivlev, V. (2019). Modeling of the separation process of bulk material according to its physical and mechanical properties. Ukrainian Black Sea region agrarian science, 4, 114–121. Available at: https://visnyk.mnau.edu.ua/statti/2019/n104/n104v4r2019aliev.pdf
- Koptev, A. A., Pershin, V. F., Sviridov, M. M., Tarov, V. P., Shubin, I. N. (2001). Osobennosti opredeleniya uglov vnutrennego treniya sypuchih materialov. Vestnik Tambovskogo gosudarstvennogo tehnicheskogo universiteta, 7 (1), 60–65.
- Kupchenko, A. V., Yalpachik, O. V., Shpiganovich, T. A., Alekseenko, V. A. (2010). Opredelenie prochnostnyh harakteristik zerna. Zernovi produkty i kombikormy, 4, 18–22.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Igor Shevchenko, Elchyn Aliiev
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.