Improving the efficiency of the process of continuous flow mixing of bulk components

Authors

  • Igor Shevchenko Institute of Oilseeds of the National Academy of Agrarian Sciences of Ukraine Instytutska str., 1, Sonyachne vil., Zaporizhzhya distr., Zaporizhzhya reg., Ukraine, 69093, Ukraine https://orcid.org/0000-0002-4191-4146
  • Elchyn Aliiev Institute of Oilseeds of the National Academy of Agrarian Sciences of Ukraine Instytutska str., 1, Sonyachne vil., Zaporizhzhya distr., Zaporizhzhya reg., Ukraine, 69093, Ukraine https://orcid.org/0000-0003-4006-8803

DOI:

https://doi.org/10.15587/1729-4061.2020.216409

Keywords:

loose material, continuous flow mixing, numerical modeling, working body, structural and technological parameters

Abstract

Modern industrial and agricultural processing almost always implies mixing loose material on a variety of equipment. At present, there are known mixers of various designs, principles, and techniques to implement the technological process. One of the existing mixing techniques is a continuous flow method that has significant advantages – reducing energy intensity while improving the quality of the process of the mixture continuous preparation and distribution. However, the continuous-flow technique of mixing loose materials has been paid little attention to. This prevents the application of well-known analytical models of the process of moving loose components to substantiate the structural and technological parameters for the working bodies of a continuous flow mixer.

The result of the analytical study of the continuous-flow mixing technique is the constructed system of differential equations of the movement of a bulk material’s components in the airflow under the influence of the working bodies’ surfaces of the designed mixer. The reported system of differential equations underlies the physical-mathematical apparatus for the numerical modeling of the specified process employing the software package StarCCM+ (USA).

The result of the numerical modeling is the established dependences of the dynamics of change in the concentration of components in the mixture and the homogeneity of the mixture in the zones of a continuous flow mixer depending on the study factors (the frequency of rotations, the angle of attack of the blade mixer, the performance of feeding the first and second components).

The optimal structural and technological parameters for a continuous flow mixer involved in the process of mixing a two-component feed mixture (stem and concentrated feed) have been determined, at which the uniformity of the resulting forage mixture is maximal

Author Biographies

Igor Shevchenko, Institute of Oilseeds of the National Academy of Agrarian Sciences of Ukraine Instytutska str., 1, Sonyachne vil., Zaporizhzhya distr., Zaporizhzhya reg., Ukraine, 69093

Doctor of Technical Sciences, Professor, Corresponding Member of the National Academy of Agrarian Sciences of Ukraine

Elchyn Aliiev, Institute of Oilseeds of the National Academy of Agrarian Sciences of Ukraine Instytutska str., 1, Sonyachne vil., Zaporizhzhya distr., Zaporizhzhya reg., Ukraine, 69093

Doctor of Technical Sciences, Senior Researcher

Department of Technical and Technological Support of Seed Production

References

  1. Fazekas, S. (2007). Distinct Element Simulations of Granular Materials. Budapest, 144. Available at: https://repozitorium.omikk.bme.hu/bitstream/handle/10890/602/ertekezes.pdf?sequence=1&isAllowed=y
  2. Holdich, R. (2002). Fundamentals of Particle Technology. Midland Information Technology and Publishing, 173. Available at: https://www.researchgate.net/publication/255700879_Fundamentals_of_Particle_Technology
  3. Alenzi, A. F. (2012). Modeling of consolidation and flow of granular material under varying conditions. University of Pittsburgh, 144. Available at: http://d-scholarship.pitt.edu/id/eprint/13172
  4. Jahani, M., Farzanegan, A., Noaparast, M. (2015). Investigation of screening performance of banana screens using LIGGGHTS DEM solver. Powder Technology, 283, 32–47. doi: https://doi.org/10.1016/j.powtec.2015.05.016
  5. Abbaspour-Fard, M. H. (2000). Discrete element modelling of the dynamic behaviour of non-spherical particulate materials. University of Newcastle upon Tyne, 275. Available at: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.324869
  6. Naeini, M. S. E. (2011). Discrete Element Modeling of Granular Flows in Vibrationally-Fluidized Beds. University of Toronto, 130. Available at: https://tspace.library.utoronto.ca/bitstream/1807/29716/17/EmamiNaeini_MohammadSaeid_201106_PhD_thesis.pdf
  7. Kol'man-Ivanov, E. E., Gusev, Yu. I., Karasev, I. N. et. al. (1985) Konstruirovanie i raschet mashin himicheskih proizvodstv. Moscow: Mashinostroenie, 228–254. Available at: https://www.twirpx.com/file/149553/
  8. Verloka, I. I., Kapranova, A. B., Lebedev, A. E. (2014). Sovremennye gravitatsionnye ustroystva nepreryvnogo deystviya dlya smeshivaniya sypuchih komponentov. Inzhenerniy vestnik Dona, 4. Available at: https://cyberleninka.ru/article/n/sovremennye-gravitatsionnye-ustroystva-nepreryvnogo-deystviya-dlya-smeshivaniya-sypuchih-komponentov
  9. Mizonov, V. E., Balagurov I. A. (2016). Teoreticheskie osnovy modelirovaniya i rascheta formirovaniya mnogokomponentnyh smesey raznorodnyh dispersnyh materialov. Ivanovo: IGEU, 108.
  10. Makarov, Yu. I. (1973). Apparaty dlya smesheniya sypuchih materialov. Moscow: Mashinostroenie, 216. Available at: https://www.twirpx.com/file/1317803/
  11. Selivanov, Yu. T., Pershin, V. F. (2004). Raschet i proektirovanie tsirkulyatsionnyh smesiteley sypuchih materialov bez vnutrennih peremeshivayushchih ustroystv. Moscow: «Izdatel'stvo mashinostroenie-1», 120. Available at: https://www.tstu.ru/book/elib/pdf/2004/selivan.pdf
  12. Shubyn, Y. N., Svyrydov, M. M., Tarov, V. P. (2005). Tekhnolohicheskye mashiny i oborudovanye. Sypuchie materialy i ikh svoistva. Tambov: Yzd-vo Tamb. hos. tekhn. un-ta, 76.
  13. Pershyn, V. F., Odnolko, V. H., Pershyna, S. V. (2009). Pererabotka sыpuchykh materyalov v mashynakh barabannoho typa. Moscow: Mashynostroenye, 220.
  14. Weinekötter, R. (2016). Mixing of Solid Materials. Production, Handling and Characterization of Particulate Materials, 291–326. doi: https://doi.org/10.1007/978-3-319-20949-4_9
  15. Delaney, G. W., Cleary, P. W., Hilden, M., Morrison, R. D. (2009). Validation of dem predictions of granular flow and separation efficiency for a horizontal laboratory scale wire mesh screen. Seventh International Conference on CFD in the Minerals and Process Industries CSIRO. Melbourne. Available at: https://www.researchgate.net/publication/43517493
  16. Herrmann, H. J. (1993). Molecular dynamics simulations of granular materials. International Journal of Modern Physics C, 04 (02), 309–316. doi: https://doi.org/10.1142/s012918319300032x
  17. Ferrara, G., Preti, U., Schena, G. D. (1987). Computer-aided Use of a Screening Process Model. APCOM 87. Proceeding of the Twentieth International Symposium on the Application of Computers and Mathematics in the Mineral Industries. Vol. 2: Metallurgy. Johannesburg, 153–166. Available at: https://www.saimm.co.za/Conferences/Apcom87Metallurgy/153-Ferrara.pdf
  18. Dinesh, J. (2009). Modelling and Simulation of a Single Particle in Laminar Flow Regime of a Newtonian Liquid. Excerpt from the Proceedings of the COMSOL Conference. Bangalore. Available at: https://www.comsol.com/paper/download/46302/Jamnani.pdf
  19. Kanehl, P. (2010). Particle model of the Magnus effect. Mathematisch-Naturwissenschaftliche Fakultät Ernst-Moritz-Arndt-Universität Greifswald, 35. Available at: https://physik.uni-greifswald.de/storages/uni-greifswald/fakultaet/mnf/physik/ag_schneider/Arbeiten/philippBA.pdf
  20. Chen, N. H. (1979). An Explicit Equation for Friction Factor in Pipe. Industrial & Engineering Chemistry Fundamentals, 18 (3), 296–297. doi: https://doi.org/10.1021/i160071a019
  21. Zhang, S., Kuwabara, S., Suzuki, T., Kawano, Y., Morita, K., Fukuda, K. (2009). Simulation of solid–fluid mixture flow using moving particle methods. Journal of Computational Physics, 228 (7), 2552–2565. doi: https://doi.org/10.1016/j.jcp.2008.12.005
  22. Di Renzo, A., Di Maio, F. P. (2004). Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes. Chemical Engineering Science, 59 (3), 525–541. doi: https://doi.org/10.1016/j.ces.2003.09.037
  23. Broas, P. (2001). Advantages and problems of CAVE-visualisation for design purposes. VTT Technical Research Centre of Finland, 73–81.
  24. Han, S. W., Lee, W. J., Lee, S. J. (2012). Study on the Particle Removal Efficiency of Multi Inner Stage Cyclone by CFD Simulation. World Academy of Science, Engineering and Technology, 6 (7), 386–390.
  25. Satish, G., Ashok Kumar, K., Vara Prasad, V., Pasha, Sk. M. (2013). Comparison of flow analysis of a sudden and gradual change of pipe diameter using fluent software. IJRET: International Journal of Research in Engineering and Technology, 2 (12), 41–45. Available at: https://www.researchgate.net/publication/334761930_COMPARISON_OF_FLOW_ANALYSIS_OF_A_SUDDEN_AND_GRADUAL_CHANGE_OF_PIPE_DIAMETER_USING_FLUENT_SOFTWARE
  26. Iguchi, M., Ilegbusi, O. J. (2014). Basic Transport Phenomena in Materials Engineering. Springer. doi: https://doi.org/10.1007/978-4-431-54020-5
  27. Ivanets, V. N., Bakin, I. A., Belousov, G. N. (2002). Entropiyniy podhod k otsenke protsessa smeshivaniya sypuchih materialov. Hranenie i perarabotka sel'skohozyaystvennogo syr'ya, 11, 16–18.
  28. Bakin, I. A., Belousov, G. N., Sablinskiy, A. I. (2001). Modelirovanie protsessa smeshivaniya entropiyno – informatsionnym metodom. Novye tehnologii v nauchnyh issledovaniyah v obrazovanii. Materialy Vserossiyskoy nauchno-prakticheskoy konferentsii. Ch. 1. Yurga.
  29. Aliev, E. B., Bandura, V. M., Pryshliak, V. M., Yaropud, V. M., Trukhanska, O. O. (2018). Modeling of mechanical and technological processes of the agricultural industry. INMATEH, 54 (1), 95–104. Available at: http://aliev.in.ua/doc/stat/2018/stat_2.pdf
  30. Shevchenko, I. A., Aliev, E. B. (2018). Research on the photoelectronic separator seed supply block for oil crops. INMATEH, 54 (1), 129–138. Available at: http://aliev.in.ua/doc/stat/2018/stat_3.pdf
  31. Aliev, E. B., Yaropud, V. M., Dudin, V. Yr., Pryshliak, V. M., Pryshliak, N. V., Ivlev, V. V. (2018). Research on sunflower seeds separation by airflow. INMATEH, 56 (3), 119–128. Available at: http://aliev.in.ua/doc/stat/2018/stat_15.pdf
  32. Aliiev, E., Gavrilchenko, A., Tesliuk, H., Tolstenko, A., Koshul’ko, V. (2019). Improvement of the sunflower seed separation process efficiency on the vibrating surface. Acta Periodica Technologica, 50, 12–22. doi: https://doi.org/10.2298/apt1950012a
  33. Aliev, E., Dudin, V., Gavrilchenko, A., Ivlev, V. (2019). Modeling of the separation process of bulk material according to its physical and mechanical properties. Ukrainian Black Sea region agrarian science, 4, 114–121. Available at: https://visnyk.mnau.edu.ua/statti/2019/n104/n104v4r2019aliev.pdf
  34. Koptev, A. A., Pershin, V. F., Sviridov, M. M., Tarov, V. P., Shubin, I. N. (2001). Osobennosti opredeleniya uglov vnutrennego treniya sypuchih materialov. Vestnik Tambovskogo gosudarstvennogo tehnicheskogo universiteta, 7 (1), 60–65.
  35. Kupchenko, A. V., Yalpachik, O. V., Shpiganovich, T. A., Alekseenko, V. A. (2010). Opredelenie prochnostnyh harakteristik zerna. Zernovi produkty i kombikormy, 4, 18–22.

Downloads

Published

2020-12-31

How to Cite

Shevchenko, I., & Aliiev, E. (2020). Improving the efficiency of the process of continuous flow mixing of bulk components. Eastern-European Journal of Enterprise Technologies, 6(1 (108), 6–13. https://doi.org/10.15587/1729-4061.2020.216409

Issue

Section

Engineering technological systems