Building a mathematical model of the oscillations in subway cars equipped with electromechanical shock absorbers
DOI:
https://doi.org/10.15587/1729-4061.2020.217183Keywords:
electromechanical shock absorber, subway car, spring suspension, running gear, spatial kinematic schemeAbstract
A mathematical model has been built of the subway car on two double-axle bogies with an axial characteristic of 20–20, whose spring suspension’s central link is equipped with springs and electromechanical dampers. A special feature of the model is its integration of such components as 17 differential equations of the second order, which describe the operation of the mechanical part «carriage-rail track», as well as 8 differential equations of the first order that describe the operation of 4 electromechanical shock absorbers. The model is complemented with three polynomials of orders 32 and 63 describing the state of the magnetic field of electromechanical shock absorbers and their electromagnetic force, as well as 4 algebraic coupling equations.
The mathematical model of the «carriage-rail track» system equipped with electromechanical shock absorbers takes into consideration the following components:
– the longitudinal and transverse oscillations by wheelsets of the car bogies and body;
– the parameters of a rail track;
– the electromagnetic features of electric shock absorbers;
– the excitation arising from a track irregularity;
– the path parameters, as well as the properties of other elements in a spring suspension.
This paper reports a study into the operation of a subway car’s spring suspension that travels over a track with a sinusoidal irregularity. The study has established that the electromechanical processes in electric shock absorbers can be divided into three parts. The oscillation free mechanical components, free components, and the forced electromagnetic components. The duration of action, the amplitudes, and nature of the oscillations’ components have been determined. The oscillation amplitude varies considerably with the increased speed: from 0.01 A and 2 V at 40 km/h up to 0.9 A and 115 V at 100 km/h. The oscillations are harmonious. The frequency of oscillations corresponds to the frequency of the track irregularity. The electric power of the electric shock absorber increases from 0.018 W at 40 km/h to 98 W at 100 km/hReferences
- Serdobintsev, E. V., Han, Y. W. (2013). Vertical Oscillations of the Metro Wagon with Pneumatic Suspension. Mir transporta, 2, 78–84.
- Liubarskyi, B., Lukashova, N., Petrenko, O., Yeritsyan, B., Kovalchuk, Y., Overianova, L. (2019). Procedure for modeling dynamic processes of the electromechanical shock absorber in a subway car. Eastern-European Journal of Enterprise Technologies, 5 (5 (101)), 44–52. doi: https://doi.org/10.15587/1729-4061.2019.181117
- Liubarskyi, B., Lukashova, N., Petrenko, O., Pavlenko, T., Iakunin, D., Yatsko, S., Vashchenko, Y. (2019). Devising a procedure to choose optimal parameters for the electromechanical shock absorber for a subway car. Eastern-European Journal of Enterprise Technologies, 4 (5 (100)), 16–25. doi: https://doi.org/10.15587/1729-4061.2019.176304
- Serdobintsev, E. V., Zvantsev, P. N., Han, Y. (2014). Choice of parameters for a metro coach with pneumatic springs. World of Transport and Transportation, 1, 34–41.
- Lukashova, N., Pavlenko, T., Liubarskyi, B., Petrenko, O. (2018). Analysis of constructions of resports lingings of rail city electric mobile composition. Control, Navigation and Communication Systems. Academic Journal, 5 (51), 65–68. doi: https://doi.org/10.26906/sunz.2018.5.065
- Passazhirskoe vagonostroenie. Katalog. Kryukovskiy vagonostroitel'niy zavod. Available at: http://www.kvsz.com/images/catalogs/tsn.pdf
- Kolpakhch’yan, P. G., Shcherbakov, V. G., Kochin, A. E., Shaikhiev, A. R. (2017). Sensorless control of a linear reciprocating switched-reluctance electric machine. Russian Electrical Engineering, 88 (6), 366–371. doi: https://doi.org/10.3103/s1068371217060086
- Forster, N., Gerlach, A., Leidhold, R., Buryakovskiy, S., Masliy, A., Lyubarskiy, B. G. (2018). Design of a Linear Actuator for Railway Turnouts. IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society, 463–470. doi: https://doi.org/10.1109/iecon.2018.8591471
- Sergienko, A. N. (2013). Matematicheskaya model' kolebaniy v hodovoy sisteme avtomobilya s elektromagnitnym dempfirovaniem. Visnyk Natsionalnoho tekhnichnoho universytetu «KhPI». Seriya: Transportne mashynobuduvannia, 31 (1004), 86–93.
- Gysen, B. L. J., van der Sande, T. P. J., Paulides, J. J. H., Lomonova, E. A. (2011). Efficiency of a Regenerative Direct-Drive Electromagnetic Active Suspension. IEEE Transactions on Vehicular Technology, 60 (4), 1384–1393. doi: https://doi.org/10.1109/tvt.2011.2131160
- Sulym, A. O., Fomin, O. V., Khozia, P. O., Mastepan, A. G. (2018). Theoretical and practical determination of parameters of on-board capacitive energy storage of the rolling stock. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 5, 79–87. doi: https://doi.org/10.29202/nvngu/2018-5/8
- Vaskovksy, Yu. M., Poda, M. V. (2020). Energy efficiency assessment for energy recovery systems of mechanical vibrations of vehicles. Bulletin of the National Technical University "KhPI". Ser.: Electrical Machines and Electromechanical Energy Conversion, 3 (1357), 52–55. doi: https://doi.org/10.20998/2409-9295.2020.3.09
- Nikonov, O., Kyrychenko, I., Shuliakov, V. (2020). Simulation modeling of external perturbations affecting wheeled vehicles of special purpose. Proceedings of The Third International Workshop on Computer Modeling and Intelligent Systems (CMIS-2020). Zaporizhzhia, 547–556. Available at: http://ceur-ws.org/Vol-2608/paper42.pdf
- Uspensky, B., Avramov, K., Liubarskyi, B., Andrieiev, Y., Nikonov, O. (2019). Nonlinear torsional vibrations of electromechanical coupling of diesel engine gear system and electric generator. Journal of Sound and Vibration, 460, 114877. doi: https://doi.org/10.1016/j.jsv.2019.114877
- Savos'kin, A. N., Serdobintsev, E. V., Ibraev, B. M. (2009). Kolebaniya vagona rel'sovogo avtobusa. Mir transporta, 1, 50–55.
- Ruban, V. G., Matva, A. M. (2009). Reshenie zadach dinamiki zheleznodorozhnyh ekipazhey v pakete Mathcad. Rostov-na-Donu, 100.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Borys Liubarskyi, Natalia Lukashova, Oleksandr Petrenko, Dmytro Iakunin, Oleh Nikonov, Olha Matsyi
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.