Development of methods for extension of the conceptual and analytical framework of the fuzzy set theory

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.217630

Keywords:

distribution density of fuzzy quantities, moments, characteristic functions, limit theorem, correlation coefficient

Abstract

Fuzzy set theory is an effective alternative to probability theory in solving many problems of studying processes and systems under conditions of uncertainty. The application of this theory is especially in demand in situations where the system under study operates under conditions of rapidly changing influencing parameters or characteristics of the environment. In these cases, the use of solutions obtained by standard methods of the probability theory is not quite correct. At the same time, the conceptual, methodological and hardware base of the alternative fuzzy set theory is not sufficiently developed. The paper attempts to fill existing gaps in the fuzzy set theory in some important areas. For continuous fuzzy quantities, the concept of distribution density of these quantities is introduced. Using this concept, a method for calculating the main numerical characteristics of fuzzy quantities, as well as a technology for calculating membership functions for fuzzy values of functions from these fuzzy quantities and their moments is proposed. The introduction of these formalisms significantly extends the capabilities of the fuzzy set theory for solving many real problems of computational mathematics. Using these formalisms, a large number of practical problems can be solved: fuzzy regression and clustering, fuzzy multivariate discriminant analysis, differentiation and integration of functions of fuzzy arguments, state diagnostics in a situation where the initial data are fuzzy, methods for solving problems of unconditional and conditional optimization, etc. The proof of the central limit theorem for the sum of a large number of fuzzy quantities is obtained. This proof is based on the characteristic functions of fuzzy quantities introduced in the work and described at the formal level. The concepts of independence and dependence for fuzzy quantities are introduced. The method for calculating the correlation coefficient for fuzzy numbers is proposed. Examples of problem solving are considered

Author Biographies

Lev Raskin, National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Professor

Department of Distributed Information Systems and Cloud Technologies

Oksana Sira, National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Professor

Department of Distributed Information Systems and Cloud Technologies

References

  1. Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8 (3), 338–353. doi: https://doi.org/10.1016/s0019-9958(65)90241-x
  2. Negoytse, K. (1981). Primenenie teorii sistem k problemam uravleniya. Moscow: MIR, 219.
  3. Orlovskiy, S. A. (1981). Problemy prinyatiya resheniy pri nechetkoy informatsii. Moscow: Nauka, 264.
  4. Dyubua, D., Prad, A. (1990). Teoriya vozmozhnostey. Prilozhenie k predstavleniyu znaniy v informatike. Moscow: Radio i svyaz', 286.
  5. Kofman, A. (1982). Vvedenie v teoriyu nechetkih mnozhestv. Moscow: Radio i svyaz', 486.
  6. Lyu, B. (2005). Teoriya i praktika neopredelennogo programmirovaniya. Moscow: BINOM, 416.
  7. Leonenkov, A. V. (2003). Nechetkoe modelirovanie v srede Matlab i fuzzyTech. Sankt-Peterburg: BHV – Peterburg, 736.
  8. Raskin, L. G., Seraya, O. V. (2008). Nechetkaya matematika. Kharkiv: Parus, 352.
  9. Ryzhov, A. P. (1998). Elementy teorii nechetkih mnozhestv i izmereniya nechetkosti. Moscow: Dialog MGU, 116.
  10. Borisov, V. V., Fedulov, A. S., Zernov, M. M. (2014). Osnovy teorii nechetkih mnozhestv. Moscow: Goryachaya Liniya – Telekom, 88.
  11. Ponomarev, A. S. (2005). Nechetkie mnozhestva v zadachah avtomatizirovannogo upravleniya i prinyatiya resheniy. Kharkiv: NTU «KhPI», 232.
  12. Yahyaeva, G. (2012). Nechetkie mnozhestva i neyronnye seti. Moscow: Internet-Universitet Informatsionnyh tehnologiy; BINOM. Laboratoriya znaniy, 316.
  13. Borisov, V. V., Kruglov, V. V., Fedulov, A. S. (2007). Nechetkie modeli i seti. Moscow: Goryachaya Liniya – Telekom, 284.
  14. Zimmermann, H.-J. (2010). Fuzzy set theory. Wiley Interdisciplinary Reviews: Computational Statistics, 2 (3), 317–332. doi: https://doi.org/10.1002/wics.82
  15. Timm, H., Borgelt, C., Döring, C., Kruse, R. (2004). An extension to possibilistic fuzzy cluster analysis. Fuzzy Sets and Systems, 147 (1), 3–16. doi: https://doi.org/10.1016/j.fss.2003.11.009
  16. Gottwald, S. (2006). Universes of Fuzzy Sets and Axiomatizations of Fuzzy Set Theory. Part I: Model-Based and Axiomatic Approaches. Studia Logica, 82 (2), 211–244. doi: https://doi.org/10.1007/s11225-006-7197-8
  17. Kremer, N. Sh. (2004). Teoriya veroyatnostey i matematicheskaya statistika. Moscow: YUNITI – DANA, 573.
  18. Chernova, N. I. (2007). Teoriya veroyatnostey. Novosibirsk, 160.
  19. Natan, A. A., Gorbachev, O. G., Guz, S. A. (2007). Teoriya veroyatnostey. Moscow: MFTI, 253.
  20. Raskin, L., Sira, O., Ivanchykhin, Y. (2017). Models and methods of regression analysis under conditions of fuzzy initial data. Eastern-European Journal of Enterprise Technologies, 4 (4 (88)), 12–19. doi: https://doi.org/10.15587/1729-4061.2017.107536
  21. Raskin, L., Sira, O., Karpenko, V. (2017). Calculation of throughputs of intermediate centers in three-index transportation problems. Eastern-European Journal of Enterprise Technologies, 3 (4 (87)), 31–37. doi: https://doi.org/10.15587/1729-4061.2017.103950
  22. Raskin, L., Sira, O., Karpenko, V. (2019). Transportation management in a distributed logistic consumption system under uncertainty conditions. EUREKA: Physics and Engineering, 4, 82–90. doi: https://doi.org/10.21303/2461-4262.2019.00936
  23. Pawlak, Z. (1991). Rough Sets: Theoretical Aspects of Reasoning about Data. Springer. doi: https://doi.org/10.1007/978-94-011-3534-4
  24. Raskin, L., Sira, O. (2016). Method of solving fuzzy problems of mathematical programming. Eastern-European Journal of Enterprise Technologies, 5 (4 (83)), 23–28. doi: https://doi.org/10.15587/1729-4061.2016.81292

Downloads

Published

2020-12-31

How to Cite

Raskin, L., & Sira, O. (2020). Development of methods for extension of the conceptual and analytical framework of the fuzzy set theory. Eastern-European Journal of Enterprise Technologies, 6(4 (108), 14–21. https://doi.org/10.15587/1729-4061.2020.217630

Issue

Section

Mathematics and Cybernetics - applied aspects