Computer simulation of multiple measurements of logarithmic transformation function by two approaches

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.218517

Keywords:

redundant methods, multiple measurements, measurement equation, function parameters, accuracy increase

Abstract

The studies of the capabilities of redundant measurement methods revealed the high efficiency of the presented methods in increasing the accuracy of multiple measurements. It was proved that redundant measurement equations ensure the independence of the measurement result from the parameters of the transformation function and their deviations from the nominal values. Experimental studies have confirmed that the accuracy of multiple measurements is increased by processing the results of intermediate measurements using equations of redundant measurements by two approaches. In particular, it was found that processing the results of multiple measurements with the logarithmic transformation function with the first approach provides the value of the relative error of 0.75×10 %, and the second – 0.02×10.

This suggests that the increase in accuracy is due to the total effect of the elimination of the systematic error component due to changes in the parameters of the transformation function and reduction of the random error component. The latter, in particular, concerns the algorithms for processing multiple measurements by two approaches. A comparative analysis was made, the advantages and disadvantages of each of the two approaches were determined. It was found that the second approach is less sensitive to an increase in the difference between the values of the controlled and normalized quantities. This allows us to state the possibility of measuring the controlled parameter of a large value without imposing high requirements on the power of the calibrated radiation source.

There is reason to assert about the promising development of redundant measurement methods in the processing of the results of multiple measurements in the field of increasing accuracy with the nonlinear transformation function

Author Biographies

Volodymyr Shcherban’, Kyiv National University of Technologies and Design Nemyrovycha-Danchenka str., 2, Kyiv, Ukraine, 01011

Doctor of Technical Sciences, Professor, Head of Department

Department of Computer Science and Technologies

Ganna Korogod, Kyiv National University of Technologies and Design Nemyrovycha-Danchenka str., 2, Kyiv, Ukraine, 01011

PhD, Associate Professor

Department of Computer Science and Technologies

Oksana Kolysko, Kyiv National University of Technologies and Design Nemyrovycha-Danchenka str., 2, Kyiv, Ukraine, 01011

PhD, Associate Professor

Department of Computer Science and Technologies

Mariana Kolysko, Kyiv National University of Technologies and Design Nemyrovycha-Danchenka str., 2, Kyiv, Ukraine, 01011

PhD, Associate Professor

Department of Computer Science and Technologies

Yury Shcherban’, State Higher Educational Establishment "Kyiv College of Light Industry" Dzhona Makkeina str., 29, Kyiv, Ukraine, 01601

Doctor of Technical Sciences, Professor, Head of Department

Department of Light Industry Technologies

Ganna Shchutska, State Higher Educational Establishment "Kyiv College of Light Industry" Dzhona Makkeina str., 29, Kyiv, Ukraine, 01601

Doctor of Technical Sciences, Associate Professor, Director

Department of Light Industry Technologies

References

  1. Shcherban’, V., Melnyk, G., Sholudko, M., Kalashnyk, V. (2018). Warp yarn tension during fabric formation. Fibres and Textiles, 2, 97–104. Available at: http://vat.ft.tul.cz/2018/2/VaT_2018_2_16.pdf
  2. Shcherban’, V., Melnyk, G., Sholudko, M., Kolysko, O., Kalashnyk, V. (2018). Yarn tension while knitting textile fabric. Fibres and Textiles, 3, 74–83. Available at: http://vat.ft.tul.cz/2018/3/VaT_2018_3_12.pdf
  3. Pronin, A. N., Sapozhnikova, K. V., Taymanov, R. E. (2015). Reliability of measurement information in control systems. Problems and their solution. T-Comm., 9 (3), 32–37. Available at: https://cyberleninka.ru/article/n/dostovernost-izmeritelnoy-informatsii-v-sistemah-upravleniya-problemy-i-resheniya/viewer
  4. Genkina, R. I., Lukashov, Yu. E., Malikova, H. O., Osoka, I. V., Skovorodnikov, V. A. (2010). Govorim VNIIMS, podrazumevaem – zakonodatel'naya metrologiya! Zakonodatel'naya i prikladnaya metrologiya, 5, 8–15.
  5. Rishan, O. Y., Matvienko, N. V. (2014). Strukturni metody pidvyshchennia tochnosti vymiriuvan v avtomatychnykh systemakh dozuvannia sypkykh materialiv z vykorystanniam mahnitopruzhnykh pervynnykh vymiriuvalnykh peretvoriuvachiv zusyllia. Naukovo-tekhnichna informatsiya, 4, 47–51. Available at: http://nbuv.gov.ua/UJRN/NTI_2014_4_11
  6. Yanenko, O. P., Mikhailenko, S. V., Lisnichuk, A. S. (2014). Radiometric modulation measuring device of intensity of optical radiation. Visnyk Natsionalnoho tekhnichnoho universytetu Ukrainy "Kyivskyi politekhnichnyi instytut". Ser.: Radiotekhnika. Radioaparatobuduvannia, 56, 96–101. Available at: http://nbuv.gov.ua/UJRN/VKPI_rr_2014_56_11
  7. Munoz Zurita, A. L., Campos, J., Ferrero, A., Pons, A. (2012). Photodiodes as Optical Radiation Measurement Standards. Photodiodes - From Fundamentals to Applications. doi: https://doi.org/10.5772/51462
  8. Shcherban’, V., Makarenko, J., Petko, A., Melnyk, G., Shcherban’, Y., Shchutska, H. (2020). Computer implementation of a recursion algorithm for determining the tension of a thread on technological equipment based on the derived mathematical dependences. Eastern-European Journal of Enterprise Technologies, 2 (1 (104)), 41–50. doi: https://doi.org/10.15587/1729-4061.2020.198286
  9. Su, Z., Liang, X. (2011). Computation and analysis on the Volt-Ampere characteristics of photodiode sensor under the certain conditions. 2011 4th International Congress on Image and Signal Processing. doi: https://doi.org/10.1109/cisp.2011.6100750
  10. Shcherban’, V., Melnyk, G., Sholudko, M., Kolysko, O., Kalashnyk, V. (2019). Improvement of structure and technology of manufacture of multilayer technical fabric. Fibres and Textiles, 2, 54–63. Available at: http://vat.ft.tul.cz/2019/2/VaT_2019_2_10.pdf
  11. Cherepanska, I. Yu., Bezvesilna, O. M., Sazonov, A. Yu. (2016). Do pytannia pidvyshchennia tochnosti kutovykh vymiriuvan honiometrychnymy systemamy. Visnyk Zhytomyrskoho derzhavnoho tekhnolohichnoho universytetu. Seriya: Tekhnichni nauky, 1 (76), 92–100. Available at: http://nbuv.gov.ua/UJRN/Vzhdtu_2016_1_12
  12. Haridy, M. A., Aslam, A. (2018). Optical Radiation Metrology and Uncertainty. Metrology. doi: https://doi.org/10.5772/intechopen.75205
  13. Shcherban’, V., Makarenko, J., Melnyk, G., Shcherban’, Y., Petko, A., Kirichenko, A. (2019). Effect of the yarn structure on the tension degree when interacting with high-curved guide. Fibres and Textiles, 4, 59–68. Available at: http://vat.ft.tul.cz/2019/4/VaT_2019_4_8.pdf
  14. Fan, Z., Gao, R. X., Wang, P., Kazmer, D. O. (2016). Multi-sensor data fusion for improved measurement accuracy in injection molding. 2016 IEEE International Instrumentation and Measurement Technology Conference Proceedings. doi: https://doi.org/10.1109/i2mtc.2016.7520465
  15. Orozco, L. (2011). Optimizing Precision Photodiode Sensor Circuit Design. Analog devices. Available at: https://www.analog.com/media/en/technical-documentation/tech-articles/Optimizing-Precision-Photodiode-Sensor-Circuit-Design-MS-2624.pdf
  16. Lewis, G., Merken, P., Vandewal, M. (2018). Enhanced Accuracy of CMOS Smart Temperature Sensors by Nonlinear Curvature Correction. Sensors, 18 (12), 4087. doi: https://doi.org/10.3390/s18124087
  17. Shcherban, V., Korogod, G., Chaban, V., Kolysko, O., Shcherban’, Y., Shchutska, G. (2019). Computer simulation methods of redundant measurements with the nonlinear transformation function. Eastern-European Journal of Enterprise Technologies, 2 (5 (98)), 16–22. doi: https://doi.org/10.15587/1729-4061.2019.160830
  18. Kondratov, V. T. (2009). Teoriya izbytochnyh izmereniy: universal'noe uravnenie izmereniy. Visnyk Khmelnytskoho natsionalnoho universytetu. Tekhnichni nauky, 5, 116–129. Available at: http://journals.khnu.km.ua/vestnik/pdf/tech/2009_5/zmist.files/23kon.pdf
  19. Kondratov, V. T. (2010). Metody izbytochnyh izmereniy: osnovnye opredeleniya i klassifikatsiya. Visnyk Khmelnytskoho natsionalnoho universytetu. Tekhnichni nauky, 3, 220–232. Available at: http://journals.khnu.km.ua/vestnik/pdf/tech/2010_3/47kon.pdf
  20. Soboleva, N. A., Melamid, A. E. (1974). Fotoelektronnye pribory. Moscow: Vysshaya shkola, 376.
  21. Kondratov, V. T. (2007). Matematicheskie modeli izbytochnyh izmereniy I-go, II-go i III-go rodov. Fundamental'nye i prikladnye problemy priborostroeniya, informatiki i ekonomiki: nauchnye trudy X-y Yubileynoy Mezhdunar. nauch.-tehn. konf. Moscow: MGU PI, 134–143.
  22. Kondratov, V. T. (2015). Problems of processing of results repeated measuring transformations of physical quantity. Tezisy dokladov 15-y mezhdunar. nauch.-tehn. konf. «Vymiriuvalna ta obchysliuvalna tekhnika v tekhnolohichnykh protsesakh» (VOTTP-15 2015). Odessa, 9–12.

Downloads

Published

2020-12-31

How to Cite

Shcherban’, V., Korogod, G., Kolysko, O., Kolysko, M., Shcherban’, Y., & Shchutska, G. (2020). Computer simulation of multiple measurements of logarithmic transformation function by two approaches. Eastern-European Journal of Enterprise Technologies, 6(4 (108), 6–13. https://doi.org/10.15587/1729-4061.2020.218517

Issue

Section

Mathematics and Cybernetics - applied aspects