Computer simulation of multiple measurements of logarithmic transformation function by two approaches
DOI:
https://doi.org/10.15587/1729-4061.2020.218517Keywords:
redundant methods, multiple measurements, measurement equation, function parameters, accuracy increaseAbstract
The studies of the capabilities of redundant measurement methods revealed the high efficiency of the presented methods in increasing the accuracy of multiple measurements. It was proved that redundant measurement equations ensure the independence of the measurement result from the parameters of the transformation function and their deviations from the nominal values. Experimental studies have confirmed that the accuracy of multiple measurements is increased by processing the results of intermediate measurements using equations of redundant measurements by two approaches. In particular, it was found that processing the results of multiple measurements with the logarithmic transformation function with the first approach provides the value of the relative error of 0.75×10 %, and the second – 0.02×10.
This suggests that the increase in accuracy is due to the total effect of the elimination of the systematic error component due to changes in the parameters of the transformation function and reduction of the random error component. The latter, in particular, concerns the algorithms for processing multiple measurements by two approaches. A comparative analysis was made, the advantages and disadvantages of each of the two approaches were determined. It was found that the second approach is less sensitive to an increase in the difference between the values of the controlled and normalized quantities. This allows us to state the possibility of measuring the controlled parameter of a large value without imposing high requirements on the power of the calibrated radiation source.
There is reason to assert about the promising development of redundant measurement methods in the processing of the results of multiple measurements in the field of increasing accuracy with the nonlinear transformation function
References
- Shcherban’, V., Melnyk, G., Sholudko, M., Kalashnyk, V. (2018). Warp yarn tension during fabric formation. Fibres and Textiles, 2, 97–104. Available at: http://vat.ft.tul.cz/2018/2/VaT_2018_2_16.pdf
- Shcherban’, V., Melnyk, G., Sholudko, M., Kolysko, O., Kalashnyk, V. (2018). Yarn tension while knitting textile fabric. Fibres and Textiles, 3, 74–83. Available at: http://vat.ft.tul.cz/2018/3/VaT_2018_3_12.pdf
- Pronin, A. N., Sapozhnikova, K. V., Taymanov, R. E. (2015). Reliability of measurement information in control systems. Problems and their solution. T-Comm., 9 (3), 32–37. Available at: https://cyberleninka.ru/article/n/dostovernost-izmeritelnoy-informatsii-v-sistemah-upravleniya-problemy-i-resheniya/viewer
- Genkina, R. I., Lukashov, Yu. E., Malikova, H. O., Osoka, I. V., Skovorodnikov, V. A. (2010). Govorim VNIIMS, podrazumevaem – zakonodatel'naya metrologiya! Zakonodatel'naya i prikladnaya metrologiya, 5, 8–15.
- Rishan, O. Y., Matvienko, N. V. (2014). Strukturni metody pidvyshchennia tochnosti vymiriuvan v avtomatychnykh systemakh dozuvannia sypkykh materialiv z vykorystanniam mahnitopruzhnykh pervynnykh vymiriuvalnykh peretvoriuvachiv zusyllia. Naukovo-tekhnichna informatsiya, 4, 47–51. Available at: http://nbuv.gov.ua/UJRN/NTI_2014_4_11
- Yanenko, O. P., Mikhailenko, S. V., Lisnichuk, A. S. (2014). Radiometric modulation measuring device of intensity of optical radiation. Visnyk Natsionalnoho tekhnichnoho universytetu Ukrainy "Kyivskyi politekhnichnyi instytut". Ser.: Radiotekhnika. Radioaparatobuduvannia, 56, 96–101. Available at: http://nbuv.gov.ua/UJRN/VKPI_rr_2014_56_11
- Munoz Zurita, A. L., Campos, J., Ferrero, A., Pons, A. (2012). Photodiodes as Optical Radiation Measurement Standards. Photodiodes - From Fundamentals to Applications. doi: https://doi.org/10.5772/51462
- Shcherban’, V., Makarenko, J., Petko, A., Melnyk, G., Shcherban’, Y., Shchutska, H. (2020). Computer implementation of a recursion algorithm for determining the tension of a thread on technological equipment based on the derived mathematical dependences. Eastern-European Journal of Enterprise Technologies, 2 (1 (104)), 41–50. doi: https://doi.org/10.15587/1729-4061.2020.198286
- Su, Z., Liang, X. (2011). Computation and analysis on the Volt-Ampere characteristics of photodiode sensor under the certain conditions. 2011 4th International Congress on Image and Signal Processing. doi: https://doi.org/10.1109/cisp.2011.6100750
- Shcherban’, V., Melnyk, G., Sholudko, M., Kolysko, O., Kalashnyk, V. (2019). Improvement of structure and technology of manufacture of multilayer technical fabric. Fibres and Textiles, 2, 54–63. Available at: http://vat.ft.tul.cz/2019/2/VaT_2019_2_10.pdf
- Cherepanska, I. Yu., Bezvesilna, O. M., Sazonov, A. Yu. (2016). Do pytannia pidvyshchennia tochnosti kutovykh vymiriuvan honiometrychnymy systemamy. Visnyk Zhytomyrskoho derzhavnoho tekhnolohichnoho universytetu. Seriya: Tekhnichni nauky, 1 (76), 92–100. Available at: http://nbuv.gov.ua/UJRN/Vzhdtu_2016_1_12
- Haridy, M. A., Aslam, A. (2018). Optical Radiation Metrology and Uncertainty. Metrology. doi: https://doi.org/10.5772/intechopen.75205
- Shcherban’, V., Makarenko, J., Melnyk, G., Shcherban’, Y., Petko, A., Kirichenko, A. (2019). Effect of the yarn structure on the tension degree when interacting with high-curved guide. Fibres and Textiles, 4, 59–68. Available at: http://vat.ft.tul.cz/2019/4/VaT_2019_4_8.pdf
- Fan, Z., Gao, R. X., Wang, P., Kazmer, D. O. (2016). Multi-sensor data fusion for improved measurement accuracy in injection molding. 2016 IEEE International Instrumentation and Measurement Technology Conference Proceedings. doi: https://doi.org/10.1109/i2mtc.2016.7520465
- Orozco, L. (2011). Optimizing Precision Photodiode Sensor Circuit Design. Analog devices. Available at: https://www.analog.com/media/en/technical-documentation/tech-articles/Optimizing-Precision-Photodiode-Sensor-Circuit-Design-MS-2624.pdf
- Lewis, G., Merken, P., Vandewal, M. (2018). Enhanced Accuracy of CMOS Smart Temperature Sensors by Nonlinear Curvature Correction. Sensors, 18 (12), 4087. doi: https://doi.org/10.3390/s18124087
- Shcherban, V., Korogod, G., Chaban, V., Kolysko, O., Shcherban’, Y., Shchutska, G. (2019). Computer simulation methods of redundant measurements with the nonlinear transformation function. Eastern-European Journal of Enterprise Technologies, 2 (5 (98)), 16–22. doi: https://doi.org/10.15587/1729-4061.2019.160830
- Kondratov, V. T. (2009). Teoriya izbytochnyh izmereniy: universal'noe uravnenie izmereniy. Visnyk Khmelnytskoho natsionalnoho universytetu. Tekhnichni nauky, 5, 116–129. Available at: http://journals.khnu.km.ua/vestnik/pdf/tech/2009_5/zmist.files/23kon.pdf
- Kondratov, V. T. (2010). Metody izbytochnyh izmereniy: osnovnye opredeleniya i klassifikatsiya. Visnyk Khmelnytskoho natsionalnoho universytetu. Tekhnichni nauky, 3, 220–232. Available at: http://journals.khnu.km.ua/vestnik/pdf/tech/2010_3/47kon.pdf
- Soboleva, N. A., Melamid, A. E. (1974). Fotoelektronnye pribory. Moscow: Vysshaya shkola, 376.
- Kondratov, V. T. (2007). Matematicheskie modeli izbytochnyh izmereniy I-go, II-go i III-go rodov. Fundamental'nye i prikladnye problemy priborostroeniya, informatiki i ekonomiki: nauchnye trudy X-y Yubileynoy Mezhdunar. nauch.-tehn. konf. Moscow: MGU PI, 134–143.
- Kondratov, V. T. (2015). Problems of processing of results repeated measuring transformations of physical quantity. Tezisy dokladov 15-y mezhdunar. nauch.-tehn. konf. «Vymiriuvalna ta obchysliuvalna tekhnika v tekhnolohichnykh protsesakh» (VOTTP-15 2015). Odessa, 9–12.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Volodymyr Shcherban, Ganna Korogod, Oksana Kolysko, Mariana Kolysko, Yury Shcherban’, Ganna Shchutska
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.