Universal method for solving optimization problems under the conditions of uncertainty in the initial data

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.225515

Keywords:

mathematical programming problem, uncertainty in the original data, universal solution method

Abstract

This paper proposes a method to solve a mathematical programming problem under the conditions of uncertainty in the original data.

The structural basis of the proposed method for solving optimization problems under the conditions of uncertainty is the function of criterion value distribution, which depends on the type of uncertainty and the values of the problem’s uncertain variables. In the case where independent variables are random values, this function then is the conventional theoretical-probabilistic density of the distribution of the random criterion value; if the variables are fuzzy numbers, it is then a membership function of the fuzzy criterion value.

The proposed method, for the case where uncertainty is described in the terms of a fuzzy set theory, is implemented using the following two-step procedure. In the first stage, using the membership functions of the fuzzy values of criterion parameters, the values for these parameters are set to be equal to the modal, which are fitted in the analytical expression for the objective function. The resulting deterministic problem is solved. The second stage implies solving the problem by minimizing the comprehensive criterion, which is built as follows. By using an analytical expression for the objective function, as well as the membership function of the problem’s fuzzy parameters, applying the rules for operations over fuzzy numbers, one finds a membership function of the criterion’s fuzzy value. Next, one calculates a measure of the compactness of the resulting membership function of the fuzzy value of the problem’s objective function whose numerical value defines the first component of the integrated criterion. The second component is the rate of deviation of the desired solution to the problem from the previously received modal one.

Absolutely similarly designed is the computational procedure for the case where uncertainty is described in the terms of a probability theory. Thus, the proposed method for solving optimization problems is universal in relation to the nature of the uncertainty in the original data. An important advantage of the proposed method is the ability to use it when solving any problem of mathematical programming under the conditions of fuzzily assigned original data, regardless of its nature, structure, and type

Author Biographies

Lev Raskin, National Technical University «Kharkiv Polytechnic Institute»

Doctor of Technical Sciences, Professor, Head of Department

Department of Distributed Information Systems and Cloud Technologies

Oksana Sira, National Technical University «Kharkiv Polytechnic Institute»

Doctor of Technical Sciences, Professor

Department of Distributed Information Systems and Cloud Technologies

Larysa Sukhomlyn, Kremenchuk Mykhailo Ostrohradskyi National University

PhD, Associate Professor

Department of Management

Yurii Parfeniuk, National Technical University «Kharkiv Polytechnic Institute»

Postgraduate Student

Department of Distributed Information Systems and Cloud Technologies

References

  1. Saaty, T. (1962). Mathematical methods of operation research. New York: McGrow-Hill Book Company, 419.
  2. Raskin, L. G. (1988). Matematicheskie metody issledovaniya operatsiy i analiza slozhnyh sistem vooruzheniya PVO. Kharkiv: VIRTA, 177.
  3. Himmelblau, D. (1972). Applied Nonlinear Programming. New York: McGraw-Hill, 498.
  4. Zangwill, W. I. (1969). Nonlinear Programming: A Unified Approach. Prentice-Hall, 356.
  5. Bazaraa, M. S., Shetty, C. M. (1979). Nonlinear Programming: Theory and Algorithms. John Wiley & Sons Inc, 576.
  6. Levin, V. I. (2015). The optimization in condition of uncertainty by determination method. Radio Electronics, Computer Science, Control, 4, 104–112.
  7. Ferreira, K. J., Lee, B. H. A., Simchi-Levi, D. (2016). Analytics for an Online Retailer: Demand Forecasting and Price Optimization. Manufacturing & Service Operations Management, 18 (1), 69–88. doi: https://doi.org/10.1287/msom.2015.0561
  8. Kunz, T. P., Crone, S. F., Meissner, J. (2016). The effect of data preprocessing on a retail price optimization system. Decision Support Systems, 84, 16–27. doi: https://doi.org/10.1016/j.dss.2016.01.003
  9. Rekleytis, G., Reyvindran, A., Regsdel, K. (1989). Optimizatsiya v tehnike. Moscow: MIR, 349.
  10. Yudin, D. B. (1974). Matematicheskie metody upravleniya v usloviyah nepolnoy informatsii. Moscow: Sovetskoe radio, 392.
  11. Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8 (3), 338–353. doi: https://doi.org/10.1016/s0019-9958(65)90241-x
  12. Negoytse, K. (1981). Primenenie teorii sistem k problemam upravleniya. Moscow: MIR, 219.
  13. Orlovskiy, S. A. (1981). Problemy prinyatiya resheniy pri nechetkoy informatsii. Moscow: Nauka, 264.
  14. Dyubua, D., Prad, A. (1990). Teoriya vozmozhnostey. Prilozhenie k predstavleniyu znaniy v informatike. Moscow: Radio i svyaz', 286.
  15. Raskin, L., Sira, O. (2020). Execution of arithmetic operations involving the second-order fuzzy numbers. Eastern-European Journal of Enterprise Technologies, 4 (4 (106)), 14–20. doi: https://doi.org/10.15587/1729-4061.2020.210103
  16. Raskin, L., Sira, O. (2020). Development of methods for extension of the conceptual and analytical framework of the fuzzy set theory. Eastern-European Journal of Enterprise Technologies, 6 (4 (108)), 14–21. doi: https://doi.org/10.15587/1729-4061.2020.217630
  17. Szmidt, E., Kacprzyk, J. (2000). Distances between intuitionistic fuzzy sets. Fuzzy Sets and Systems, 114 (3), 505–518. doi: https://doi.org/10.1016/s0165-0114(98)00244-9
  18. Yang, M.-S., Lin, T.-S. (2002). Fuzzy least-squares linear regression analysis for fuzzy input–output data. Fuzzy Sets and Systems, 126 (3), 389–399. doi: https://doi.org/10.1016/s0165-0114(01)00066-5
  19. Ramík, J., Rommelfanger, H. (1996). Fuzzy mathematical programming based on some new inequality relations. Fuzzy Sets and Systems, 81 (1), 77–87. doi: https://doi.org/10.1016/0165-0114(95)00241-3
  20. Liu, B., Liu, Y.-K. (2002). Expected value of fuzzy variable and fuzzy expected value models. IEEE Transactions on Fuzzy Systems, 10 (4), 445–450. doi: https://doi.org/10.1109/tfuzz.2002.800692
  21. Zak, Yu. A. (2011). Determinirovannyy ekvivalent i algoritmy resheniya zadachi fuzzy-lineynogo programmirovaniya. Problemy upravleniya i informatiki, 1, 87–101.
  22. Raskin, L., Sira, O. (2019). Construction of the fractional-nonlinear optimization method. Eastern-European Journal of Enterprise Technologies, 4 (4 (100)), 37–43. doi: https://doi.org/10.15587/1729-4061.2019.174079
  23. Raskin, L. G., Seraya, O. V. (2003). Formirovanie skalyarnogo kriteriya predpochteniya po rezul'tatam poparnyh sravneniy obektov. Visnyk NTU «KhPI», 6, 63–68.
  24. Raskin, L. G., Kirichenko, I. O. (2005). Kontinual'noe lineynoe programmirovanie. Kharkiv: VIVV, 178.

Downloads

Published

2021-02-26

How to Cite

Raskin, L., Sira, O., Sukhomlyn, L., & Parfeniuk, Y. (2021). Universal method for solving optimization problems under the conditions of uncertainty in the initial data . Eastern-European Journal of Enterprise Technologies, 1(4 (109), 46–53. https://doi.org/10.15587/1729-4061.2021.225515

Issue

Section

Mathematics and Cybernetics - applied aspects