Determination of the regularities of the soil punching process by the working body with the asymetric tip

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.230256

Keywords:

trenchless technologies, ground puncture, utilities, working body, traffic control

Abstract

The presence of analytical dependencies describing the process of static soil puncture by a working body with a conical asymmetric tip is necessary to create installations with the ability to control the trajectory of the soil puncture.

The paper considers the features of the process of interaction of an asymmetric conical tip with the ground. Analytical relationships were obtained to determine its reactions during a static puncture, the deviation of the head trajectory from a straight line, to determine the size of the soil compaction zone and the magnitude of the destructive force that acts on adjacent communications and other underground objects. It was found that with an increase in the value of the displacement of the top of the cone, for example, from its axis from 0.02 m to 0.08 m with a borehole diameter of 0.2 m, the value of soil resistance increases almost four times. The greatest resistance is achieved when piercing a hard sandy sand.

It was found that with an increase in the displacement of the tip of the tip cone, the deviation of the trajectory increases. The piercing head achieves the greatest deviation from the straight trajectory of movement with a sharper cone and a greater asymmetric deviation of its top, and, for example, in hard sandy loam can be up to 0.17 m with a span of 10 m.

It was found that the size of the soil destruction zone will be almost 1.8 times larger than the tip in the form of a symmetrical cone and reaches from 8 to 12 borehole diameters, depending on the type of soil. The maximum pressure on adjacent objects can reach from 0.06 MPa in hard-plastic clay to 0.09 MPa in hard sandy loam.

The calculated dependences obtained for determining the power and technological parameters depending on the geometric dimensions of the asymmetric tip of the working body can be used to create installations with a controlled static puncture for use in the most common soil conditions.

Author Biographies

Svyatoslav Kravets, National University of Water and Environmental Engineering

Doctor of Technical Sciences, Professor

Department of Building, Road, Melioration, Agricultural Machinery and Equipment

Vladimir Suponyev, Kharkiv National Automobile and Highway University

Doctor of Technical Sciences, Associate Professor

Department of Construction and Road-Building Machinery

Valery Shevchenko, Kharkiv National Automobile and Highway University

PhD, Associate Professor

Department of Construction and Road-Building Machinery

Alexander Yefymenko, Kharkiv National Automobile and Highway University

PhD, Associate Professor

Department of Construction and Road-Building Machinery

Vitaliy Ragulin, Kharkiv National Automobile and Highway University

PhD, Associate Professor

Department of Construction and Road-Building Machinery

References

  1. Zwierzchowska, A., Kuliczkowska, E. (2019). The selection of the optimum trenchless pipe laying technology with the use of fuzzy logic. Tunnelling and Underground Space Technology, 84, 487–494. doi: http://doi.org/10.1016/j.tust.2018.11.030
  2. Adams, E. (2007). Latest developments for the trenchless construction of pipelines. Oil Gas-European Magazine, 33, (2), 62–66.
  3. Zhao, J., Ling, B. (2014). Trenchless technology underground pipes. Shanghai: Machinery Industry Press, 134.
  4. Cohen, A., Ariaratnam, S. (2017). Developing a Successful Specification for Horizontal Directional Drilling Pipelines. Planning and Design 2017. Phoenix: 45. doi: http://doi.org/10.1061/9780784480878.050
  5. Eshutkin, D. N., Smirnov, Yu. M., Tsoy, V. M., Isaev, V. L. (1990). Vysokoproizvoditelnye gidropnevmaticheskie udarnye mashiny dlya prokladki inzhenernykh kommunikatsiy. Moscow: Stroyizdat, 176.
  6. Kravets, S. V., Kovanko, V. V., Lukianchuk, O. P. (2015). Naukovi osnovy stvorennia zemleryino-yarusnykh mashyn i pidzemnorukhomykh prystroiv. Rivne: NUVHP, 322.
  7. Kruse, G. (2009). The trenchless technique horizontal directional drilling. Soil related risk and risk mitigation. 4th Pipeline Technology Conference, 134–156.
  8. Romakin, N. E., Malkova, N. V. (2007). Parametry rabochego instrumenta dlya staticheskogo prokola gruta. Stroitelnye i dorozhnye mashiny, 11, 31–33.
  9. Kravets, S., Suponyev, V., Rieznikov, O., Kosiak, O., Nechydiuk, A., Klets, D., Chevychelova, O. (2018). Determination of the resistance of the cylindrical­tubular drill for trenchless laying of underground communications. Eastern-European Journal of Enterprise Technologies, 3 (7 (93)), 64–70. doi: http://doi.org/10.15587/1729-4061.2018.131838
  10. Tsung, N., Zheng, M., Najafi, M., Mehraban, S. (2016). A Comparative Study of Soil Pressure and Deformation of Pipes Installed by the Open-Cut Method and Trenchless Technology. Pipelines 2016 Out of Sight, Out of Mind, Not Out of Risk. Shanghai, 135. doi: http://doi.org/10.1061/9780784479957.132
  11. Asperger, M., Jeremic, B. (2012). Examination of the Cavity Expension Model: Predicting Hydrofracture During Horizontal Directional Drilling. ECI 284: Theoretical Geomechanics. Term Project, 256–267.
  12. Raksha, S., Anofriev, P., Kuropiatnyk, O. (2019). Simulation modelling of the rolling stock axle test-bench. E3S Web of Conferences, 123, 01032. doi: http://doi.org/10.1051/e3sconf/201912301032
  13. Perepechko, Y., Kireev, S., Sorokin, K., Imomnazarov, S. (2019). Use of Parallel Technologies for Numerical Simulations of Unsteady Soil Dynamics in Trenchless Borehole Drilling. Parallel Computational Technologies, 1063, 197–210. doi: http://doi.org/10.1007/978-3-030-28163-2_14
  14. Posmituha, O., Kravets, S., Suponyev, V., Glavatsky, K. (2018). Determination of equivalent and optimal sizes of wedge tip from flange for the static perforation of soil. MATEC Web of Conferences, 230, 01011. doi:10.1051/matecconf/201823001011
  15. Zemskov, V. M., Sudakov, A. V. (2005). Analiz issledovaniya lobovogo soprotivleniya pri bestransheynoy prokladke truboprovodov metodom prokola. Izvestiya TulGU. Seriya Podemno-transportnye mashiny i oborudovanie, 6, 35–38.
  16. Gusev, I. V., Chubarov, F. L. (2014). Primenenie upravlyaemogo prokola grunta pri bestransheynoy prokladke trub. Potentsial sovremennoy nauki, 2, 30–33.
  17. Lunys, O., Neduzha, L., Tatarinova, V. (2019). Stability research of the main-line locomotive movement. Proc. of the 23rd Int. Sci. Conf. Transport Means 2019 pt III. Palanga: Kaunas Univ. of Technology, 1341–1345.
  18. Cherkashin, S. (2016). Installation of the Pipelines Made of Ductile Iron (DI) With the Usage Of Horizontal-directional Drilling Technique (HDD) For Water Supply Treatment Service and Sewerage Pipelines Construction and Reconstruction. Procedia Engineering, 165, 717–725. doi: http://doi.org/10.1016/j.proeng.2016.11.769
  19. Belyaev, N. M. (1962). Soprotivlenie materialov. Moscow: Fizmatgiz, 608.
  20. Goldshteyn, M. N. (1979). Mekhanicheskie svoystva gruntov (napryazhenno-deformirovannye i prochnostnye kharakteristiki gruntov). Moscow: Stroyizdat, 304.
  21. Khachaturian, S. L. (2013). Fizychne modeliuvannia ta bahatofaktornyi eksperyment dlia vyznachennia zusyllia prokoliuvannia robochym orhanom aktyvnoi diyi. Zbirnyk naukovykh prats (haluzeve mashynobuduvannia, budivnytstvo), 1 (36), 238–243.
  22. Rogachev, A. A. (2006). Formirovante upravlencheskogo resheniya pri opredelenii rezhimov gornykh vyrabotok na osnovanii matematicheskogo iodelirovaniya. Izvestiya TulGU. Seriya «Ekonomika. Upravlenie. Finansy», 3, 356–360.
  23. Romakin, N. E., Malkova, N. V. (2006). Usilie vnedreniya i optimalniy ugol zaostreniya rabochego nakonechnika pri staticheskom prokole ґrunta. Stroitelnye i dorozhnye mashiny, 10, 35–39.

Downloads

Published

2021-04-20

How to Cite

Kravets, S., Suponyev, V., Shevchenko, V. ., Yefymenko, A., & Ragulin, V. (2021). Determination of the regularities of the soil punching process by the working body with the asymetric tip. Eastern-European Journal of Enterprise Technologies, 2(1 (110), 44–51. https://doi.org/10.15587/1729-4061.2021.230256

Issue

Section

Engineering technological systems