The flow stability with the small disturbances and the turbulence appearance conditions investigations

Authors

  • Андрій Петрович Олійник Ivano-Frankivsk National Tehnical University of Oil and Gas Karpatska, 15, Ivano-Frankivsk, 76019, Ukraine https://orcid.org/0000-0003-1031-7207
  • Ростислав Богданович Скрипюк Ivano-Frankivsk National Tehnical University of Oil and Gas Karpatska, 15, Ivano-Frankivsk, 76019, Ukraine
  • Володимир Шеремета Ivano-Frankivsk National Tehnical University of Oil and Gas Karpatska, 15, Ivano-Frankivsk, 76019, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2014.23142

Keywords:

symmetry of distribution, Navier-Stokes equations, stability of calculations, leakage areas, pipeline

Abstract

A mathematical model of the flow of viscous fluid in the pipeline in the presence of leakages through its surface, which is based on the Navier-Stokes equation system in a two-dimensional rectangular area with a special type of boundary conditions is developed. They take into account the geometric configuration of the leakage area. It is believed that the fluid motion is performed under the pressure drop, which is steady along the length. To solve this system, numerical finite difference method, which allows to realize the scheme, which on the first step is implicit on the longitudinal coordinate, and on the second - on the cross, is developed. The stability study using the spectral feature method is carried out, stability conditions for the case of calculating the flow with the set parameters and for a given type of the pipeline geometry are determined. Calculations for a wide class of boundary conditions are conducted. The patterns of the velocity distribution of various configurations of leakage areas and in their absence are defined. It is found that the effects of leakage presence are especially noticeable in the zone near the pipeline wall.

The pattern of deviation from the symmetry of distribution of the value of longitudinal component, depending on the distance to the leakage, velocity change near the pipeline wall, depending on the leakage intensity and parameters of the computational grid is determined. Peculiarities of flow behavior near the wall after the longitudinal component acquired zero value are defined. The results can be used when designing the localization system of small leakages of oil products with different leakage area configurations. In addition, the specified method can be used when studying utility pipelines, process pipelines in various industries. It was found that the developed method adequately describes the studied phenomena. Directions for further research, such as identifying dependencies for different kinds of liquids, pipeline specifications, leakage area configurations, as well as studies of more complex dependencies of pressure on the coordinates of the studied area are defined. 

Author Biographies

Андрій Петрович Олійник, Ivano-Frankivsk National Tehnical University of Oil and Gas Karpatska, 15, Ivano-Frankivsk, 76019

Doctor of technical scince, Professor

Department of Mathematical Methods in Engineering

Ростислав Богданович Скрипюк, Ivano-Frankivsk National Tehnical University of Oil and Gas Karpatska, 15, Ivano-Frankivsk, 76019

Сandidatе of technical science

Department of Computer Tecnologies in Automatics and Control Systems

Володимир Шеремета, Ivano-Frankivsk National Tehnical University of Oil and Gas Karpatska, 15, Ivano-Frankivsk, 76019

Magistre

Department of Computer Tecnologies in Automatics and Control Systems

References

  1. Олійник, А. П. Моделювання розподілу тиску в трубопроводі за наявності витоків з використанням формули Даламбера [Текст] / А. П. Олійник, Л. О. Штаєр // Віс- ник Кременчуцького національного університету імені Михайла Остроградського. – 2013. – Вип. 2 (79). – С. 66–71.
  2. Архипов, Б. В. Применение математических методов для анализа и оценки экологически значимых событий при крупномасштабной аварии подводного газопровода [Текст] / Б. В. Архипов и др.; отв. ред. А. П. Абрамов. – Москва: Вычислительный центр им. А. А. Дородницына Россий¬ской акад. наук, 2007. – 74 с.
  3. Едигаров, А. С. Математическое моделирование аварійного истечения и рассеивания природного газа при разрыве газопровода [Текст] / А. С. Едигаров, В. А. Сулейманов // Математическое моделирование. – 1995. – Т. 7, № 4. – С. 37–52.
  4. Олійник, А. П. Математичні моделі процесу квазістаціонарного деформування трубопровідних та промислових систем при зміні їх просторової конфігурації [Текст] / А. П.Олійник // Наукове видання. – Івано-Франківськ: ІФНТУНГ, 2010. – 320 с.
  5. Larson, R. G. Instabilities in viscoelastic flows [Text] / R. G. Larson // Rheol. Acta. – 1992. – Vol. 31, № 3. – P. 213–263.
  6. Frigaard, I. A. On the stability of Poiseulle flow of a Bingham fluids [Text] / I. A. Frigaard, S. D. Howison, I. J. Sobey // J. Fluid Mechanics. – 1994. – Vol. 263. – P. 133–150.
  7. Георгиевский, Д. В. Устойчивость процессов деформирования вязкопластических тел [Текст] / Д. В. Георгиевский. – М.: УРСС, 1998. – 176 с.
  8. Шкадов, В. Я. Течения вязкой жидкости [Текст]/ В. Я. Шкадов, З. Д. Запрянов. – М.: Из.-во Моск. ун-та, 1984. – 200 с.
  9. Андерсон, Д. Вычислительная гидромеханика и теплообмен [Текст] / Д. Андерсон, Дж. Таннехил, Р. Плетчер // М.: Мир. – 1990. – Т. 1. – 384 с.
  10. Олійник, А. П. Дослідження впливу параметрів релаксації на збіжність чисельного методу послідовної верхньої релак¬сації для задачі Діріхле [Текст] / А. П. Олійник, Л. О. Штаєр // Карпатські математичні публікації. – 2012 – Т. 4, № 2. – С. 289–296.
  11. Олейник, О. А. Математические методы в теории пограничного слоя [Текст] / О. А. Олейник, В. Н.Самохин. – М.: Физмат- лит, 1997. – 512 с.
  12. Олийнык, А. П. Моделирование течения вязкой жидкости при наличии оттока через границу области и перепада давления [Текст] / А. П.Олийнык, Л. Е. Штаер // Вестник Московского Университета. Серия 1. Математика. Механика. – 2013. – № 3. – С. 61–65.
  13. Olijnyk, A. P., Shtaier, O. L. (2013). Simulation of pressure distribution in the pipeline for leaking using the d’Alembert formula. Bulletin of the Kremenchug National University Michael Ostrogradskiy. Kremenchug: KrNU, 2 (79), 66-71.
  14. Arkhipov, B. V. (2007). Application of mathematical methods for the analysis and assessment of environmentally significant events in large-scale underwater gas pipeline accident. Moscow: Computing Centre of. Dorodnitsyn Russian Acad. Sciences, 74.
  15. Yedigarov, A. S., Suleymanov, V. A. (1995). Mathematical modeling of emergency expiration and dispersion of natural gas the ruptured pipeline. Mathematical modelling, 7(4), 37–52 .
  16. Olijnyk, A. P. (2010). Mathematical model of stationary deformation and industrial piping systems by changing their spatial configuration. Science Edition, Ivano-Frankivsk:IFNTUOG, 320.
  17. Larson, R. G. (1992). Instabilities in viscoelastic flows. Rheol. Acta, 31(3), 213–263.
  18. Frigaard, I. A., Howison, S. D., Sobey, I. J. (1994). On the stability of Poiseulle flow of a Bingham fluids. Fluid Mechanics, 263, 133–150.
  19. Georgievskiy, D. V. (1998). Stability viscoplastic deformation processes bodies. Moscow: URSS, 176.
  20. Shkadov, V. Y., Zapryanov, Z. D. (1984). Viscous fluid flows. Moscow university Press, 200.
  21. Anderson, D., Tannehill, J., Pletcher, R. (1990). Computational fluid mechanics and heat exchange. Moscow: Myr, 1, 384.
  22. Olijnyk, A. P., Shtaier, O. L. (2012). Research of the influence of relaxation parameters on the convergence of the numerical method of successive upper relaxation for the Dirichlet problem. Carpathian Mathematical Publications, 4 (2), 289–296.
  23. Olejnik, O. A, Samokhin, V. N. (1997). Mathematical methods in boundary layer theory. Moscow Fizmatlit, 512.
  24. Olijnyk, A. P., Staer, L. E. (2013). Simulation of viscous fluid flow with consideration of boundary outflow and pressure drop. Moscow University Mechanics Bulletin, Vol. 68, № 3, 69–72.

Published

2014-04-08

How to Cite

Олійник, А. П., Скрипюк, Р. Б., & Шеремета, В. (2014). The flow stability with the small disturbances and the turbulence appearance conditions investigations. Eastern-European Journal of Enterprise Technologies, 2(7(68), 36–41. https://doi.org/10.15587/1729-4061.2014.23142

Issue

Section

Applied mechanics