Estimation of parameters of poly-gaussian models by polynomial maximization method
DOI:
https://doi.org/10.15587/1729-4061.2014.23156Keywords:
polygaussian distribution, polynomial maximization method, moment-cumulant description, statistical modelingAbstract
A promising direction for solving various problems of processing random sequences and signals is the use of poly-Gaussian models (Gaussian mixtures). To estimate the parameters of these models, the polynomial maximization method (Kunchenko’s method) is first proposed in the paper. This method uses a moment-cumulant description of random variables. It is positioned as an alternative between the method of moments and the maximum likelihood method. The results of estimating the parameters for approximating the frequency distribution by the bi-Gaussian model are given in the paper. The coefficients of reducing the variance estimate were calculated and the approximation adequacy using the chi-square criterion was estimated. According to the results of the conducted studies it may be concluded about the great advantage of Kunchenko’s method over the method of moments and its approximation of the efficiency to the maximum likelihood method. Further studies are aimed at estimating the parameters of poly-Gaussian models of higher orders and developing random sequences on their basis.
References
- Литвак, М. Я. Полигауссовские модели негауссовской случайно-шероховатой поверхности [Текст] / М. Я. Литвак, В. И. Малюгин // Журнал технической физики. – 2012. – Т. 82, № 4. – С. 99–107.
- Чикрин, Д. Е. Построение эффективных систем регулировки мощности в каналах связи с негауссовым комплексом помех [Текст] / Д. Е. Чикрин, В. И. Малюгин // Радиотехнические и телекоммуникационные системы. – 2011. – № 4. – С. 78–80.
- Melnykov, V. Finite mixture models and model-based clustering [Text] / V. Melnykov, R. Maitra // Statistics Surveys. – 2010. – № 4. – P. 80–116.
- Delay and Doppler Estimation of Gaussian Mixtures Using Moment [Text] : 17th inter. conf. // Systems, Signals and Image Processing. Proceedings Chair Fabiana R. Leta. — Rio de Janeiro: IWSSIP, 2010. – 532 p.
- Ибатуллин, Э. А. Оценивание параметров полигауссового распределения плотностей вероятности сигналов методом максимального правдоподобия [Текст] / Э. А. Ибатуллин // Электронный научно-технический журнал “Информационные технологии и телерадиокоммуникации”. – 2005. – № 5 (1). – С. 25–32
- Королев, В. Ю. Разделение смесей вероятностных распределений при помощи сеточных методов моментов и максимального правдоподобия [Текст] / В. Ю. Королев, А. Л. Назаров // Автомат. и телемех. – 2010. – № 3. – С. 98–116.
- Xu, D. Continuous empirical characteristic function estimation of mixtures of normal parameters [Text] / D. Xu, J. Knight // Econometric Reviews. – 2011. – Vol. 30, Issue 1. – P. 25–50.
- Kunchenko, Y. P. Polynomial parameter estimation of close to Gaussian random variables [Text] / Y. P. Kunchenko. – Aachen: Shaker, 2002. – 396 p.
- Кунченко, Ю. П. Стохастические полиномы [Текст] / Ю. П. Кунченко. – К.: Наукова думка, 2006. – 275 с.
- Kelley, C. T., Solving Nonlinear Equations with Newton’s Method, no 1 in Fundamentals of Algorithms [Text] / C. T. Kelley. – Philadelphia: SIAM, 2003. – 104 p.
- Greenwood, P. E. A guide to chi-squared testing [Text] / P. E. Greenwood, M. S. Nikulin. – New York: Wiley, 1996. – 280 p.
- Чепинога, А. В. Аналіз ефективності застосування чисельних методів для пошуку параметрів полігаусових моделей [Текст] / А. В. Чепинога // Вісник Інженерної академії України. – 2010. – № 2. – С. 135–139.
- Litvak, M. Y., Malugin, V. I. (2012). Poligaussian model of nonGaussian random rough surface. Technical Physics, Vol. 82, 4, 99–107.
- Chikrin, D. E. (2011). Building effective systems for power control in the communication channels with non-Gaussian complex noise. Radio Engineering and telecommunications systems. 4, 78–80.
- Melnykov, V., Maitra, R. (2010). Finite mixture models and modelbased clustering. Statistics Surveys. 4, 80–116.
- Gholizadeh, M. H., Amindavar, H. (2010). Delay and Doppler Estimation of Gaussian Mixtures Using Moment. 17th International Conference on Systems, Signals and Image Processing, 465–468.
- Ibatullin, E. A. (2005). Parameter Estimation of poligaussian probability density signals by maximum likelihood. Information Technologies and teleradiocommunication, 5 (1), 25–32.
- Korolev, V. Y., Nazarov, A. (2010). Separating mixtures of probability distributions using the grid method of moments and maximum likelihood. Automatic. and telemechanics, 3, 98–116.
- Xu, D., Knight J. (2011). Continuous empirical characteristic function estimation of mixtures of normal parameters. Econometric Reviews. Vol. 30, 1, 25–50.
- Kunchenko, Y. P. (2002). Polynomial parameter estimation of close to Gaussian random variables. Shaker, 396.
- Kunchenko, Y. P. (2006). Stochastic polynomials. Science Dumka, 275.
- Kelley, C. T. (2003). Solving Nonlinear Equations with Newton’s Method, no 1 in Fundamentals of Algorithms. SIAM, 104.
- Greenwood, P. E., Nikulin, M. S. (1996). A guide to chi-squared testing. Wiley, 280.
- Chepinoga, A. V. (2010). Analysis of the efficacy of numerical methods for finding parameters of poligaussian models. Journal of Engineering Academy of Ukraine, 2, 135–139.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Анатолий Владимирович Чепинога, Сергей Васильевич Заболотний, Елена Владимировна Бурдукова
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.