Constructing Steklov-type cubature formulas for a finite element in the shape of a bipyramid
DOI:
https://doi.org/10.15587/1729-4061.2021.238024Keywords:
bipyramid, octahedron, stiffness matrix, cubature formula, interpolation nodes, weight coefficientsAbstract
This paper reports the construction of cubature formulas for a finite element in the form of a bipyramid, which have a second algebraic order of accuracy. The proposed formulas explicitly take into consideration the parameter of bipyramid deformation, which is important when using irregular grids. The cubature formulas were constructed by applying two schemes for the location of interpolation nodes along the polyhedron axes: symmetrical and asymmetrical. The intervals of change in the elongation (compression) parameter of a bipyramid semi-axis have been determined, within which interpolation nodes of the constructed formulas belong to the integration region, while the weight coefficients are positive, which warrants the stability of calculations based on these cubature formulas. If the deformation parameter of the bipyramid is equal to unity, then both cubature formulas hold for the octahedron and have a third algebraic order of accuracy.
The resulting formulas make it possible to find elements of the local stiffness matrix on a finite element in the form of a bipyramid. When calculating with a finite number of digits, a rounding error occurs, which has the same order for each of the two cubature formulas.
The intervals of change in the elongation (compression) parameter of the bipyramid semi-axis have been determined, which meet the requirements, which are employed in the ANSYS software package, for deviations in the volume of the bipyramid from the volume of the octahedron.
Among the constructed cubature formulas for a bipyramid, the optimal formula in terms of the accuracy of calculations has been chosen, derived from applying a symmetrical scheme of the arrangement of nodes relative to the center of the bipyramid. This formula is invariant in relation to any affinity transformations of the local bipyramid coordinate system. The constructed cubature formulas could be included in libraries of methods for approximate integration used by those software suites that implement the finite element method.
References
- Jaśkowiec, J., Sukumar, N. (2020). High‐order cubature rules for tetrahedra. International Journal for Numerical Methods in Engineering, 121 (11), 2418–2436. doi: https://doi.org/10.1002/nme.6313
- Jaśkowiec, J., Sukumar, N. (2020). High‐order symmetric cubature rules for tetrahedra and pyramids. International Journal for Numerical Methods in Engineering, 122 (1), 148–171. doi: https://doi.org/10.1002/nme.6528
- Witherden, F. D., Vincent, P. E. (2015). On the identification of symmetric quadrature rules for finite element methods. Computers & Mathematics with Applications, 69 (10), 1232–1241. doi: https://doi.org/10.1016/j.camwa.2015.03.017
- Grosso, R., Greiner, G. (1998). Hierarchical meshes for volume data. Proceedings. Computer Graphics International (Cat. No.98EX149), 761–769. doi: https://doi.org/10.1109/cgi.1998.694336
- Zienkiewicz, O. C. (2014). Introductory Lectures on the Finite Element Method. Springer, 99. doi: https://doi.org/10.1007/978-3-7091-2973-9
- Greiner, G., Grosso, R. (2000). Hierarchical tetrahedral-octahedral subdivision for volume visualization. The Visual Computer, 16 (6), 357–369. doi: https://doi.org/10.1007/pl00007214
- Ren, D. Q., Giannacopoulos, D. D. (2006). Parallel mesh refinement for 3-D finite element electromagnetics with tetrahedra: Strategies for optimizing system communication. IEEE Transactions on Magnetics, 42 (4), 1251–1254. doi: https://doi.org/10.1109/tmag.2006.872469
- Da Qi Ren, McFee, S., Giannacopoulos, D. D. (2008). A New Strategy for Reducing Communication Latency in Parallel 3-D Finite Element Tetrahedral Mesh Refinement. IEEE Transactions on Magnetics, 44 (6), 1410–1413. doi: https://doi.org/10.1109/tmag.2007.916038
- Motailo, A. P. (2019). Heometrychne modeliuvannia skaliarnykh ta vektornykh poliv na reshitkakh tetraedralno-oktaedralnoi struktury. Dnipro, 24. Available at: http://www.dnu.dp.ua/docs/ndc/dissertations/K08.051.01/autoreferat_5d8004509755e.pdf
- Motailo, A. (2021). Cubature formula on the octahedron. Young Scientist, 5 (93), 181–184. doi: https://doi.org/10.32839/2304-5809/2021-5-93-34
- Motailo, A. P., Khomchenko, A. N., Tuluchenko, G. Ya. (2016). The constructing of bipyramid’s basis. Radio Electronics, Computer Science, Control, 4, 29–36. doi: https://doi.org/10.15588/1607-3274-2016-4-4
- Segerlind, L. J. (1985). Applied Finite Element Analysis. Wiley, 427. Available at: https://kupdf.net/download/applied-finite-element-analysis-2nd-ed-l-segerlind-wiley-1984-ww_590695a7dc0d600f44959ea7_pdf
- Krylov, V. I. (1967). Priblizhennoe vychislenie integralov. Moscow, 500. Available at: https://ikfia.ysn.ru/wp-content/uploads/2018/01/Krylov1967ru.pdf
- Sharyi, S. P. (2021). Kurs vychislitel'nyh metodov. Novosibirsk, 655. Available at: http://www.ict.nsc.ru/matmod/files/textbooks/SharyNuMeth.pdf
- ANSYS Icepak 12.1: User's Guide. Checking the Skewness. Available at: https://www.yumpu.com/en/document/read/5683234/ansys-icepak-121-users-guide/847
- ANSYS Fluent. Available at: https://www.ansys.com/products/fluids/ansys-fluent
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Anzhelika Motailo, Galina Tuluchenko
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.