Математичне моделювання динаміки руху пасажиропотоків на залізничному вокзалі

Authors

  • Андрій Володимирович Прохорченко Ukrainian State Academy of Railway Transport Square Feuerbach, 7, Kharkov, Ukraine, 61050, Ukraine https://orcid.org/0000-0003-3123-5024
  • І. А. Труфанова Ukrainian State Academy of Railway Transport Square Feuerbach, 7, Kharkov, Ukraine, 61050, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2009.23949

Keywords:

railway station, dynamics of motion of passenger streams, collective intellect

Abstract

The paper suggests to improve the passenger traffic management technology at railway stations due to the mathematical modeling of the movement of passengers during the transshipment with takin in account the individual features of the behavior of each passenger in the flow from the global objectives and local information (the visibility of the passenger)

Author Biographies

Андрій Володимирович Прохорченко, Ukrainian State Academy of Railway Transport Square Feuerbach, 7, Kharkov, Ukraine, 61050

PhD, Senior Lecturer
Management of operational work

І. А. Труфанова, Ukrainian State Academy of Railway Transport Square Feuerbach, 7, Kharkov, Ukraine, 61050

Master
Institute of retraining and advanced training

References

  1. G.K. Still, Crowd Dynamics. PhD Thesis, Mathematics Department, Warwick University, August 2000.
  2. D.Helbing, I.Farkas, T.Vicsek, Simulating dynamical features of escape panic, Nature, 407(2000), 487-490.
  3. M. Sabry Hassouna and Aly A. Farag, “Multistencils Fast Marching Methods: A Highly Accurate Solution to the Eikonal Equation on Cartesian Domains,” IEEE Transaction on Pattern Analysis and Machine Intelligence PAMI, vol. 29, no. 9, pp. 1-12, Sep 2007.
  4. Неітеративні, еволюційні та мультиагентні методи синтезу нечіткологічних і нейромережних моделей: Монографія / Під заг. ред. С.О. Субботіна. – Запоріжжя: ЗНТУ, 2009. – 375 с.
  5. Berg H.C., Brown D. A. Chemotaxis in escherichia coli analyzed by three-dimensional tracking // Nature, 1972. – №239. – P. 500–504.
  6. Jur van den Berg, J., Patil, S., Sewall, J., Manocha, D., and Lin, M.: Interactive navigation of multiple agents in crowded environments. In Proceedings of the 2008 Symposium on interactive 3D Graphics and Games (Redwood City, California, February 15 - 17, 2008). I3D ‘08. ACM, New York, NY, 139-147. 2008.
  7. HUGHES, R. L. 2003. The flow of human crowds. Annu. Rev. Fluid Mech. 35, 169–182.
  8. Treuille, A., Cooper, S., and Popović, Z. 2006. Continuum crowds. In ACM SIGGRAPH 2006 Papers (Boston, Massachusetts, July 30 - August 03, 2006). SIGGRAPH ‘06. ACM, New York, NY, 1160-1168.

Published

2014-04-28

How to Cite

Прохорченко, А. В., & Труфанова, І. А. (2014). Математичне моделювання динаміки руху пасажиропотоків на залізничному вокзалі. Eastern-European Journal of Enterprise Technologies, 5(4(41), 27–30. https://doi.org/10.15587/1729-4061.2009.23949

Issue

Section

Mathematics and Cybernetics - applied aspects