Development of object state estimation method in intelligent decision support systems

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.239854

Keywords:

decision support systems, artificial neural networks, genetic algorithm

Abstract

A method of object state estimation in intelligent decision support systems (DSS) has been developed. The essence of the method is to ensure a high-quality analysis of the current state of the analyzed object. The key difference of the developed method is the use of an advanced genetic algorithm. The advanced genetic algorithm is used when constructing a fuzzy cognitive model and increases the efficiency of identifying factors and relationships between them by simultaneously finding a solution by several individuals. The objective and complete analysis is achieved using advanced fuzzy temporal models of the object state, taking into account the type of uncertainty and noise of initial data. The method also contains an improved procedure for processing initial data under a priori uncertainty, an improved procedure for training artificial neural networks and an improved procedure for topological analysis of the structure of fuzzy cognitive models. The essence of the training procedure is the training of synaptic weights of the artificial neural network, the type and parameters of the membership function, as well as the architecture of individual elements and the architecture of the artificial neural network as a whole. The method increases the efficiency of data processing at the level of 11–15 % using additional advanced procedures. The proposed method can be used in DSS of automated control systems (artillery units, special-purpose geographic information systems). It can also be used in DSS for aviation and air defense ACS, as well as in DSS for logistics ACS of the Armed Forces

Author Biographies

Vitalii Bezuhlyi, The National Defence University of Ukraine named after Ivan Cherniakhovsky

Adjunct

Department of Management of Troops (Forces) in Peace

Volodymyr Oliynyk, The National Defence University of Ukraine named after Ivan Cherniakhovsky

Adjunct

Department of Airborne Troops and Special Forces

Іgor Romanenko, Central Scientific Research Institute of Armament and Military Equipment of the Armed Forces of Ukraine Povitroflotskyi ave.,

Doctor of Technical Sciences, Professor, Leading Researcher

Scientific Research Department

Oleksandr Zhuk, Military Institute of Telecommunications and Information Technologies named after Heroes of Kruty

Doctor of Technical Sciences, Associate Professor, Head of Department

Department of Information Security in Telecommunication Systems and Networks

Vasyl Kuzavkov, Military Institute of Telecommunications and Information Technologies named after Heroes of Kruty

Doctor of Technical Sciences, Associate Professor, Head of Department

Department of Construction of Telecommunication Systems

Oleh Borysov, Military Institute of Telecommunications and Information Technologies named after Heroes of Kruty

PhD, Senior Lecturer

Department of Construction of Telecommunication Systems

Serhii Korobchenko, Central Scientific Research Institute of Armament and Military Equipment of the Armed Forces of Ukraine

PhD, Leading Researcher

Research Laboratory for Scientific and Methodological Support of Military-Technical Cooperation

Eduard Ostapchuk, Central Scientific Research Institute of Armament and Military Equipment of the Armed Forces of Ukraine

Deputy Head of Research Department

Research Department for the Development of Protection and Survivability of Weapons and Military Equipment

Taras Davydenko, The National Defence University of Ukraine named after Ivan Cherniakhovsky

Associate Professor

Department of Intelligence

Andrii Shyshatskyi, Central Scientific Research Institute of Armament and Military Equipment of the Armed Forces of Ukraine

PhD, Senior Researcher

Research Department of Electronic Warfare Development

References

  1. Bashkyrov, O. M., Kostyna, O. M., Shyshatskyi, A. V. (2015). Rozvytok intehrovanykh system zviazku ta peredachi danykh dlia potreb Zbroinykh Ozbroiennia ta viyskova tekhnika, 1 (5), 35–39.
  2. Dudnyk, V., Sinenko, Y., Matsyk, M., Demchenko, Y., Zhyvotovskyi, R., Repilo, I. et. al. (2020). Development of a method for training artificial neural networks for intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 3 (2 (105)), 37–47. doi: https://doi.org/10.15587/1729-4061.2020.203301
  3. Maistrenko, O., Khoma, V., Karavanov, O., Stetsiv, S., Shcherba, A. (2021). Devising a procedure for justifying the choice of reconnaissance-firing systems. Eastern-European Journal of Enterprise Technologies, 1 (3 (109)), 60–71. doi: https://doi.org/10.15587/1729-4061.2021.224324
  4. Pievtsov, H., Turinskyi, O., Zhyvotovskyi, R., Sova, O., Zvieriev, O., Lanetskii, B., Shyshatskyi, A. (2020). Development of an advanced method of finding solutions for neuro-fuzzy expert systems of analysis of the radioelectronic situation. EUREKA: Physics and Engineering, 4, 78–89. doi: https://doi.org/10.21303/2461-4262.2020.001353
  5. Zuiev, P., Zhyvotovskyi, R., Zvieriev, O., Hatsenko, S., Kuprii, V., Nakonechnyi, O. et. al. (2020). Development of complex methodology of processing heterogeneous data in intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 4 (9 (106)), 14–23. doi: https://doi.org/10.15587/1729-4061.2020.208554
  6. Shyshatskyi, A., Zvieriev, O., Salnikova, O., Demchenko, Ye., Trotsko, O., Neroznak, Ye. (2020). Complex Methods of Processing Different Data in Intellectual Systems for Decision Support System. International Journal of Advanced Trends in Computer Science and Engineering, 9 (4), 5583‒5590 doi: https://doi.org/10.30534/ijatcse/2020/206942020
  7. Yeromina, N., Kurban, V., Mykus, S., Peredrii, O., Voloshchenko, O., Kosenko, V. et. al. (2021). The Creation of the Database for Mobile Robots Navigation under the Conditions of Flexible Change of Flight Assignment. International Journal of Emerging Technology and Advanced Engineering, 11 (05), 37‒44. doi: https://doi.org/10.46338/ijetae0521_05
  8. Petrosian, R., Chukhov, V., Petrosian, A. (2021). Development of a method for synthesis the FIR filters with a cascade structure based on genetic algorithm. Technology Audit and Production Reserves, 4 (2 (60)), 6–11. doi: https://doi.org/10.15587/2706-5448.2021.237271
  9. Alpeeva, E. A., Volkova, I. I. (2019). The use of fuzzy cognitive maps in the development of an experimental model of automation of production accounting of material flows. Russian Journal of Industrial Economics, 12 (1), 97–106. doi: https://doi.org/10.17073/2072-1633-2019-1-97-106
  10. Zagranovskaya, A. V., Eissner, Y. N. (2017). Simulation scenarios of the economic situation based on fuzzy cognitive maps. Modern economics: problems and solutions, 10 (94), 33‒47. doi: https://doi.org/10.17308/meps.2017.10/1754
  11. Simankov, V. S., Putyato, M. M. (2013). Issledovanie metodov kognitivnogo analiza. Sistemniy analiz, upravlenie i obrabotka informatsii, 13, 31‒35.
  12. Ko, Y.-C., Fujita, H. (2019). An evidential analytics for buried information in big data samples: Case study of semiconductor manufacturing. Information Sciences, 486, 190–203. doi: https://doi.org/10.1016/j.ins.2019.01.079
  13. Ramaji, I. J., Memari, A. M. (2018). Interpretation of structural analytical models from the coordination view in building information models. Automation in Construction, 90, 117–133. doi: https://doi.org/10.1016/j.autcon.2018.02.025
  14. Pérez-González, C. J., Colebrook, M., Roda-García, J. L., Rosa-Remedios, C. B. (2019). Developing a data analytics platform to support decision making in emergency and security management. Expert Systems with Applications, 120, 167–184. doi: https://doi.org/10.1016/j.eswa.2018.11.023
  15. Chen, H. (2018). Evaluation of Personalized Service Level for Library Information Management Based on Fuzzy Analytic Hierarchy Process. Procedia Computer Science, 131, 952–958. doi: https://doi.org/10.1016/j.procs.2018.04.233
  16. Chan, H. K., Sun, X., Chung, S.-H. (2019). When should fuzzy analytic hierarchy process be used instead of analytic hierarchy process? Decision Support Systems, 125, 113114. doi: https://doi.org/10.1016/j.dss.2019.113114
  17. Osman, A. M. S. (2019). A novel big data analytics framework for smart cities. Future Generation Computer Systems, 91, 620–633. doi: https://doi.org/10.1016/j.future.2018.06.046
  18. Gödri, I., Kardos, C., Pfeiffer, A., Váncza, J. (2019). Data analytics-based decision support workflow for high-mix low-volume production systems. CIRP Annals, 68 (1), 471–474. doi: https://doi.org/10.1016/j.cirp.2019.04.001
  19. Harding, J. L. (2013). Data quality in the integration and analysis of data from multiple sources: some research challenges. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-2/W1, 59–63. doi: https://doi.org/10.5194/isprsarchives-xl-2-w1-59-2013
  20. Papa, A., Shemet, Y., Yarovyi, A. (2021). Analysis of fuzzy logic methods for forecasting customer churn. Technology Audit and Production Reserves, 1 (2 (57)), 12–14. doi: https://doi.org/10.15587/2706-5448.2021.225285
  21. Gorelova, G. V. (2013). Cognitive approach to simulation of large systems. Izvestiya YuFU. Tekhnicheskie nauki, 3, 239–250.
  22. Lutsenko, I., Fomovskaya, E., Oksanych, I., Koval, S., Serdiuk, O. (2017). Development of a verification method of estimated indicators for their use as an optimization criterion. Eastern-European Journal of Enterprise Technologies, 2 (4 (86)), 17–23. doi: https://doi.org/10.15587/1729-4061.2017.95914
  23. Koshlan, A., Salnikova, O., Chekhovska, M., Zhyvotovskyi, R., Prokopenko, Y., Hurskyi, T. et. al. (2019). Development of an algorithm for complex processing of geospatial data in the special-purpose geoinformation system in conditions of diversity and uncertainty of data. Eastern-European Journal of Enterprise Technologies, 5 (9 (101)), 35–45. doi: https://doi.org/10.15587/1729-4061.2019.180197
  24. Mahdi, Q. A., Shyshatskyi, A., Prokopenko, Y., Ivakhnenko, T., Kupriyenko, D., Golian, V. et. al. (2021). Development of estimation and forecasting method in intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 3 (9 (111)), 51–62. doi: https://doi.org/10.15587/1729-4061.2021.232718
  25. Poloziuk, K., Yaremenko, V. (2020). Neural networks and Monte-Carlo method usage in multi-agent systems for sudoku problem solving. Technology Audit and Production Reserves, 6 (2 (56)), 38–41. doi: https://doi.org/10.15587/2706-5448.2020.218427
  26. Аkanova, A., Kaldarova, M. (2020). Impact of the compilation method on determining the accuracy of the error loss in neural network learning. Technology Audit and Production Reserves, 6 (2 (56)), 34–37. doi: https://doi.org/10.15587/2706-5448.2020.217613
  27. Leoshchenko, S., Oliinyk, A., Subbotin, S., Zaiko, T. (2020). Usage of swarm intelligence strategies during projection of parallel neuroevolution methods for neuromodel synthesis. Technology Audit and Production Reserves, 5 (2 (55)), 12–17. doi: https://doi.org/10.15587/2706-5448.2020.214769
  28. Yaremenko, V., Syrotiuk, O. (2020). Development of a multi-agent system for solving domain dictionary construction problem. Technology Audit and Production Reserves, 4 (2 (54)), 27–30. doi: https://doi.org/10.15587/2706-5448.2020.208400
  29. Lakhno, V., Sagun, A., Khaidurov, V., Panasko, E. (2020). Development of an intelligent subsystem for operating system incidents forecasting. Technology Audit and Production Reserves, 2 (2 (52)), 35–39. doi: https://doi.org/10.15587/2706-5448.2020.202498
  30. Hoseini Alinodehi, S. P., Moshfe, S., Saber Zaeimian, M., Khoei, A., Hadidi, K. (2016). High-Speed General Purpose Genetic Algorithm Processor. IEEE Transactions on Cybernetics, 46 (7), 1551–1565. doi: https://doi.org/10.1109/tcyb.2015.2451595
  31. Hou, N., He, F., Zhou, Y., Chen, Y., Yan, X. (2018). A Parallel Genetic Algorithm With Dispersion Correction for HW/SW Partitioning on Multi-Core CPU and Many-Core GPU. IEEE Access, 6, 883–898. doi: https://doi.org/10.1109/access.2017.2776295
  32. Nobile, M. S., Cazzaniga, P., Besozzi, D., Colombo, R., Mauri, G., Pasi, G. (2018). Fuzzy Self-Tuning PSO: A settings-free algorithm for global optimization. Swarm and Evolutionary Computation, 39, 70–85. doi: https://doi.org/10.1016/j.swevo.2017.09.001
  33. Nugroho, E. D., Wibowo, M. E., Pulungan, R. (2017). Parallel implementation of genetic algorithm for searching optimal parameters of artificial neural networks. 2017 3rd International Conference on Science and Technology - Computer (ICST). doi: https://doi.org/10.1109/icstc.2017.8011867
  34. Bergel, A. (2020). Neuroevolution. Agile Artificial Intelligence in Pharo, 283–294. doi: https://doi.org/10.1007/978-1-4842-5384-7_14

Downloads

Published

2021-10-31

How to Cite

Bezuhlyi, V., Oliynyk, V., Romanenko І., Zhuk, O., Kuzavkov, V., Borysov, O., Korobchenko, S., Ostapchuk, E., Davydenko, T., & Shyshatskyi, A. (2021). Development of object state estimation method in intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 5(3 (113), 54–64. https://doi.org/10.15587/1729-4061.2021.239854

Issue

Section

Control processes