Розробка методу оцінювання стану об’єкту в інтелектуальних системах підтримки прийняття рішень
DOI:
https://doi.org/10.15587/1729-4061.2021.239854Ключові слова:
системи підтримки прийняття рішень, штучні нейронні мережі, генетичний алгоритмАнотація
Проведено розробку методу оцінки стану об’єкту в інтелектуальних системах підтримки прийняття рішень (СППР). Сутність методу полягає в забезпеченні високої якості аналізу поточного стану об’єкту, що досліджується. Ключовою відмінністю розробленого методу є використання удосконаленого генетичного алгоритму. Удосконалений генетичний алгоритм використовується на етапі побудови нечіткої когнітивної моделі. Використання удосконаленого генетичного алгоритму дозволяє підвищити оперативність ідентифікації факторів та встановлення зв’язків між ними за рахунок одночасного пошуку рішення декількома особами. Об’єктивний та повний аналіз досягається використанням удосконалених нечітких темпоральних моделей стану об’єкту, врахуванням типу невизначеності та зашумленості вихідних даних. Метод також містить удосконалену процедури обробки вихідних даних в умовах апріорної невизначеності, удосконалену процедури навчання штучних нейронних мереж та удосконаленої процедури топологічного аналізу структури нечітких когнітивних моделей. Сутність процедури навчання полягає в тому, що відбувається навчання синаптичних ваг штучної нейронної мережі, типу та параметрів функції належності, а також архітектури окремих елементів і архітектури штучної нейронної мережі в цілому. Використання методу дає можливість досягти підвищення оперативності обробки даних на рівні 11–15 % за рахунок використання додаткових удосконалених процедур. Пропонується використання запропонованого методу в СППР автоматизованих систем управління (АСУ) артилерійськими підрозділами, геоінформаційних системах спеціального призначення). Також можливо використання в СППР АСУ авіацією та протиповітряної оборони, а також в СППР АСУ логістичного забезпечення Збройних Сил
Посилання
- Bashkyrov, O. M., Kostyna, O. M., Shyshatskyi, A. V. (2015). Rozvytok intehrovanykh system zviazku ta peredachi danykh dlia potreb Zbroinykh Ozbroiennia ta viyskova tekhnika, 1 (5), 35–39.
- Dudnyk, V., Sinenko, Y., Matsyk, M., Demchenko, Y., Zhyvotovskyi, R., Repilo, I. et. al. (2020). Development of a method for training artificial neural networks for intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 3 (2 (105)), 37–47. doi: https://doi.org/10.15587/1729-4061.2020.203301
- Maistrenko, O., Khoma, V., Karavanov, O., Stetsiv, S., Shcherba, A. (2021). Devising a procedure for justifying the choice of reconnaissance-firing systems. Eastern-European Journal of Enterprise Technologies, 1 (3 (109)), 60–71. doi: https://doi.org/10.15587/1729-4061.2021.224324
- Pievtsov, H., Turinskyi, O., Zhyvotovskyi, R., Sova, O., Zvieriev, O., Lanetskii, B., Shyshatskyi, A. (2020). Development of an advanced method of finding solutions for neuro-fuzzy expert systems of analysis of the radioelectronic situation. EUREKA: Physics and Engineering, 4, 78–89. doi: https://doi.org/10.21303/2461-4262.2020.001353
- Zuiev, P., Zhyvotovskyi, R., Zvieriev, O., Hatsenko, S., Kuprii, V., Nakonechnyi, O. et. al. (2020). Development of complex methodology of processing heterogeneous data in intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 4 (9 (106)), 14–23. doi: https://doi.org/10.15587/1729-4061.2020.208554
- Shyshatskyi, A., Zvieriev, O., Salnikova, O., Demchenko, Ye., Trotsko, O., Neroznak, Ye. (2020). Complex Methods of Processing Different Data in Intellectual Systems for Decision Support System. International Journal of Advanced Trends in Computer Science and Engineering, 9 (4), 5583‒5590 doi: https://doi.org/10.30534/ijatcse/2020/206942020
- Yeromina, N., Kurban, V., Mykus, S., Peredrii, O., Voloshchenko, O., Kosenko, V. et. al. (2021). The Creation of the Database for Mobile Robots Navigation under the Conditions of Flexible Change of Flight Assignment. International Journal of Emerging Technology and Advanced Engineering, 11 (05), 37‒44. doi: https://doi.org/10.46338/ijetae0521_05
- Petrosian, R., Chukhov, V., Petrosian, A. (2021). Development of a method for synthesis the FIR filters with a cascade structure based on genetic algorithm. Technology Audit and Production Reserves, 4 (2 (60)), 6–11. doi: https://doi.org/10.15587/2706-5448.2021.237271
- Alpeeva, E. A., Volkova, I. I. (2019). The use of fuzzy cognitive maps in the development of an experimental model of automation of production accounting of material flows. Russian Journal of Industrial Economics, 12 (1), 97–106. doi: https://doi.org/10.17073/2072-1633-2019-1-97-106
- Zagranovskaya, A. V., Eissner, Y. N. (2017). Simulation scenarios of the economic situation based on fuzzy cognitive maps. Modern economics: problems and solutions, 10 (94), 33‒47. doi: https://doi.org/10.17308/meps.2017.10/1754
- Simankov, V. S., Putyato, M. M. (2013). Issledovanie metodov kognitivnogo analiza. Sistemniy analiz, upravlenie i obrabotka informatsii, 13, 31‒35.
- Ko, Y.-C., Fujita, H. (2019). An evidential analytics for buried information in big data samples: Case study of semiconductor manufacturing. Information Sciences, 486, 190–203. doi: https://doi.org/10.1016/j.ins.2019.01.079
- Ramaji, I. J., Memari, A. M. (2018). Interpretation of structural analytical models from the coordination view in building information models. Automation in Construction, 90, 117–133. doi: https://doi.org/10.1016/j.autcon.2018.02.025
- Pérez-González, C. J., Colebrook, M., Roda-García, J. L., Rosa-Remedios, C. B. (2019). Developing a data analytics platform to support decision making in emergency and security management. Expert Systems with Applications, 120, 167–184. doi: https://doi.org/10.1016/j.eswa.2018.11.023
- Chen, H. (2018). Evaluation of Personalized Service Level for Library Information Management Based on Fuzzy Analytic Hierarchy Process. Procedia Computer Science, 131, 952–958. doi: https://doi.org/10.1016/j.procs.2018.04.233
- Chan, H. K., Sun, X., Chung, S.-H. (2019). When should fuzzy analytic hierarchy process be used instead of analytic hierarchy process? Decision Support Systems, 125, 113114. doi: https://doi.org/10.1016/j.dss.2019.113114
- Osman, A. M. S. (2019). A novel big data analytics framework for smart cities. Future Generation Computer Systems, 91, 620–633. doi: https://doi.org/10.1016/j.future.2018.06.046
- Gödri, I., Kardos, C., Pfeiffer, A., Váncza, J. (2019). Data analytics-based decision support workflow for high-mix low-volume production systems. CIRP Annals, 68 (1), 471–474. doi: https://doi.org/10.1016/j.cirp.2019.04.001
- Harding, J. L. (2013). Data quality in the integration and analysis of data from multiple sources: some research challenges. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-2/W1, 59–63. doi: https://doi.org/10.5194/isprsarchives-xl-2-w1-59-2013
- Papa, A., Shemet, Y., Yarovyi, A. (2021). Analysis of fuzzy logic methods for forecasting customer churn. Technology Audit and Production Reserves, 1 (2 (57)), 12–14. doi: https://doi.org/10.15587/2706-5448.2021.225285
- Gorelova, G. V. (2013). Cognitive approach to simulation of large systems. Izvestiya YuFU. Tekhnicheskie nauki, 3, 239–250.
- Lutsenko, I., Fomovskaya, E., Oksanych, I., Koval, S., Serdiuk, O. (2017). Development of a verification method of estimated indicators for their use as an optimization criterion. Eastern-European Journal of Enterprise Technologies, 2 (4 (86)), 17–23. doi: https://doi.org/10.15587/1729-4061.2017.95914
- Koshlan, A., Salnikova, O., Chekhovska, M., Zhyvotovskyi, R., Prokopenko, Y., Hurskyi, T. et. al. (2019). Development of an algorithm for complex processing of geospatial data in the special-purpose geoinformation system in conditions of diversity and uncertainty of data. Eastern-European Journal of Enterprise Technologies, 5 (9 (101)), 35–45. doi: https://doi.org/10.15587/1729-4061.2019.180197
- Mahdi, Q. A., Shyshatskyi, A., Prokopenko, Y., Ivakhnenko, T., Kupriyenko, D., Golian, V. et. al. (2021). Development of estimation and forecasting method in intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 3 (9 (111)), 51–62. doi: https://doi.org/10.15587/1729-4061.2021.232718
- Poloziuk, K., Yaremenko, V. (2020). Neural networks and Monte-Carlo method usage in multi-agent systems for sudoku problem solving. Technology Audit and Production Reserves, 6 (2 (56)), 38–41. doi: https://doi.org/10.15587/2706-5448.2020.218427
- Аkanova, A., Kaldarova, M. (2020). Impact of the compilation method on determining the accuracy of the error loss in neural network learning. Technology Audit and Production Reserves, 6 (2 (56)), 34–37. doi: https://doi.org/10.15587/2706-5448.2020.217613
- Leoshchenko, S., Oliinyk, A., Subbotin, S., Zaiko, T. (2020). Usage of swarm intelligence strategies during projection of parallel neuroevolution methods for neuromodel synthesis. Technology Audit and Production Reserves, 5 (2 (55)), 12–17. doi: https://doi.org/10.15587/2706-5448.2020.214769
- Yaremenko, V., Syrotiuk, O. (2020). Development of a multi-agent system for solving domain dictionary construction problem. Technology Audit and Production Reserves, 4 (2 (54)), 27–30. doi: https://doi.org/10.15587/2706-5448.2020.208400
- Lakhno, V., Sagun, A., Khaidurov, V., Panasko, E. (2020). Development of an intelligent subsystem for operating system incidents forecasting. Technology Audit and Production Reserves, 2 (2 (52)), 35–39. doi: https://doi.org/10.15587/2706-5448.2020.202498
- Hoseini Alinodehi, S. P., Moshfe, S., Saber Zaeimian, M., Khoei, A., Hadidi, K. (2016). High-Speed General Purpose Genetic Algorithm Processor. IEEE Transactions on Cybernetics, 46 (7), 1551–1565. doi: https://doi.org/10.1109/tcyb.2015.2451595
- Hou, N., He, F., Zhou, Y., Chen, Y., Yan, X. (2018). A Parallel Genetic Algorithm With Dispersion Correction for HW/SW Partitioning on Multi-Core CPU and Many-Core GPU. IEEE Access, 6, 883–898. doi: https://doi.org/10.1109/access.2017.2776295
- Nobile, M. S., Cazzaniga, P., Besozzi, D., Colombo, R., Mauri, G., Pasi, G. (2018). Fuzzy Self-Tuning PSO: A settings-free algorithm for global optimization. Swarm and Evolutionary Computation, 39, 70–85. doi: https://doi.org/10.1016/j.swevo.2017.09.001
- Nugroho, E. D., Wibowo, M. E., Pulungan, R. (2017). Parallel implementation of genetic algorithm for searching optimal parameters of artificial neural networks. 2017 3rd International Conference on Science and Technology - Computer (ICST). doi: https://doi.org/10.1109/icstc.2017.8011867
- Bergel, A. (2020). Neuroevolution. Agile Artificial Intelligence in Pharo, 283–294. doi: https://doi.org/10.1007/978-1-4842-5384-7_14
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2021 Vitalii Bezuhlyi, Volodymyr Oliynyk, Іgor Romanenko, Oleksandr Zhuk, Vasyl Kuzavkov, Oleh Borysov, Serhii Korobchenko, Eduard Ostapchuk, Taras Davydenko, Andrii Shyshatskyi
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Закріплення та умови передачі авторських прав (ідентифікація авторства) здійснюється у Ліцензійному договорі. Зокрема, автори залишають за собою право на авторство свого рукопису та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons CC BY. При цьому вони мають право укладати самостійно додаткові угоди, що стосуються неексклюзивного поширення роботи у тому вигляді, в якому вона була опублікована цим журналом, але за умови збереження посилання на першу публікацію статті в цьому журналі.
Ліцензійний договір – це документ, в якому автор гарантує, що володіє усіма авторськими правами на твір (рукопис, статтю, тощо).
Автори, підписуючи Ліцензійний договір з ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР», мають усі права на подальше використання свого твору за умови посилання на наше видання, в якому твір опублікований. Відповідно до умов Ліцензійного договору, Видавець ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР» не забирає ваші авторські права та отримує від авторів дозвіл на використання та розповсюдження публікації через світові наукові ресурси (власні електронні ресурси, наукометричні бази даних, репозитарії, бібліотеки тощо).
За відсутності підписаного Ліцензійного договору або за відсутністю вказаних в цьому договорі ідентифікаторів, що дають змогу ідентифікувати особу автора, редакція не має права працювати з рукописом.
Важливо пам’ятати, що існує і інший тип угоди між авторами та видавцями – коли авторські права передаються від авторів до видавця. В такому разі автори втрачають права власності на свій твір та не можуть його використовувати в будь-який спосіб.