Determining the optimal parameters of ultra-high-frequency treatment of chickpeas for the production of gluten-free flour

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.241877

Keywords:

leguminous crop, Miras 07 chickpea variety, ultra-high-frequency processing, gluten-free flour

Abstract

This paper describes the materials and results of studying the properties of such a leguminous crop as the chickpea variety Miras 07 of Kazakhstan selection in order to obtain gluten-free flour and further process it to produce confectionery products.

The research involved the ultra-high-frequency (UHF) treatment of chickpea grain to improve quality indicators and reduce anti-alimentary factors.

A change in the protein fraction of chickpeas was determined under exposure to ultra-high-frequency processing. The study has proven the effectiveness of ultra-high-frequency treatment of chickpea for 180 seconds.

Based on chemical analysis, it was found that the exposure to ultra-high-frequency treatment fully preserved the vitamin and mineral complex, compared with untreated chickpeas. When chickpea grain is heated for 180 seconds, up to 20 % of the starch contained in the grain passes into dextrin, which is easily absorbed by humans while the toxic substances are destroyed.

The change in the protein fraction of chickpeas during ultra-high-frequency processing was determined. With ultra-high-frequency treatment of chickpea flour at 180 seconds of exposure, the protein fraction content remains unchanged at 79.8 %. The result based on the IR spectrum data indicates that ultra-high-frequency processing did not affect the protein-amino acid composition of the examined Miras 07 chickpea variety.

The current study has confirmed the effectiveness of ultra-high-frequency chickpea treatment, which leads to the intensification of biochemical processes in the processed product due to the resonant absorption of energy by protein molecules and polysaccharides.

Under the influence of ultra-high-frequency treatment, there is a decrease in the microbiological contamination of raw materials while the organoleptic indicators improve. According to the microbiological indicators of chickpea flour, the content of microorganisms was 1×103 CFU/g, which meets the requirements for sanitary and hygienic safety

Supporting Agency

  • Научно-исследовательская работа выполняется в рамках грантового финансирования Министерство образования и науки Республики Казахстан по теме: АР09561622 «Разработка технологии производства безглютеновых мучных кондитерских изделий с применением муки из семян зернобобовых культур, выращенных в Казахстане»

Author Biographies

Aigul Omaraliyeva, Kazakh University of Technology and Business

PhD, Associate Professor

Department of Technology and Standardization

Zhanar Botbayeva, Kazakh University of Technology and Business

PhD, Associate Professor

Department of Technology and Standardization

Mereke Agedilova, Kazakh University of Technology and Business

PhD, Associate Professor

Department of Technology and Standardization

Meruyert Abilova, Saken Seifullin Kazakh Agrotechnical University

Department of Technology of Food and Processing Industries

Aidana Zhanaidarova, Kazakh University of Technology and Business

Department of Technology and Standardization

References

  1. V Kazahstane rastet spros na produkty pitaniya, ne soderzhaschie glyuten – uchenye. Available at: https://kazakh-zerno.net/158824-v-kazahstane-rastet-spros-na-produkty-pitanija-ne-soderzhashhie-gljuten-uchenye/
  2. Arranz, E., Fernández-Bañares, F., M.Rosell, C., Rodrigo, L., Peña, A. S. (Eds.) (2015). Advances in the Understanding of Gluten related Pathology and the Evolution of Gluten-Free Foods. OmniaScience. doi: https://doi.org/10.3926/oms.274
  3. Kazantseva, I. L. (2016). Nauchno-prakticheskoe obosnovanie i sovershenstvovanie tekhnologii kompleksnoy pererabotki zerna nuta s polucheniem ingredientov dlya sozdaniya produktov zdorovogo pitaniya. Saratov, 391.
  4. Sharipova, M. N. (2009). Kliniko-epidemiologicheskie i geneticheskie osobennosti tseliakii u detey Kazahstana. Pediatriya, 88 (1), 106–108.
  5. Nazarova, A. (2021). Tseliakiya u detey. Kazahstanskiy farmatsevticheskiy vestnik, 17 (616). Available at: https://pharmnewskz.com/ru/article/celiakiya-u-detey_18786
  6. Botbayeva, Z. T., Koptleyova, T. M., Muslimov, N. Zh., Baigenzhinov, K. A., Zhanaidarova, A. E. (2020). Development of technology for producing gluten-free dry mixes for confectionery products based on Kazakhstani raw materials. Eurasian Journal of Biosciences, 14 (1), 483–491. Available at: https://www.elibrary.ru/item.asp?id=43273369
  7. Kaloriynost' Nut (turetskiy goroh). Himicheskiy sostav i pischevaya tsennost'. Available at: https://health-diet.ru/base_of_food/sostav/239.php
  8. Hanmaa, Ch. T., Goncharuk, O. V. (2020). Obosnovanie podhodov k sozdaniyu bezglyutenovyh muchnyh konditerskih izdeliy s ispol'zovaniem vtorostepennyh vidov muki. Innovatsii v pischevoy promyshlennosti: obrazovanie, nauka, proizvodstvo: Materialy 4-y vserossiyskoy nauchno-prakticheskoy konferentsii. Blagoveschensk, 30–34. Available at: https://www.elibrary.ru/item.asp?id=42748464
  9. Popov, V. G., Hajrullina, N. G., Sadykova, Kh. N. (2021). Trends in the use of gluten-free flours in the production of functional products. Proceedings of the Voronezh State University of Engineering Technologies, 83 (1), 121–128. doi: https://doi.org/10.20914/2310-1202-2021-1-121-128
  10. Kudinov, P. I., Schekoldina, T. V., Slizkaya, A. S. (2012). Current status and structure of vegetable protein world resources. Pischevaya tekhnologiya, 5-6, 7–10.
  11. Codex Alimentarius (2018). Available at: http://www.fao.org/3/CA1176RU/ca1176ru.pdf
  12. Muslimov, N. Z., Borovskiy, A. Y., Kizatova, M. E., Sultanova, M. Z., Omaraliyeva, A. M. (2020). Flour receipt based on grain legumes. Eurasian journal of biosciences, 14 (1), 1287–1297. Available at: https://www.elibrary.ru/item.asp?id=45312510
  13. Shalagina, Yu. A. (2016). Izmenenie obema krupy pri svch obrabotke. Evraziyskiy Soyuz Uchenyh, 4-4 (25), 49–52. Available at: https://www.elibrary.ru/item.asp?id=27440101
  14. Ling, B., Cheng, T., Wang, S. (2019). Recent developments in applications of radio frequency heating for improving safety and quality of food grains and their products: A review. Critical Reviews in Food Science and Nutrition, 60 (15), 2622–2642. doi: https://doi.org/10.1080/10408398.2019.1651690
  15. Kipriyanov, F. A., Savinykh, P. A., Isupov, A. Yu., Plotnikova, Y. A., Medvedeva, N. A., Belozerova, S. V. (2021). Journal of water and land development, 49 (IV-VI), 74–78. doi: https://doi.org/10.24425/jwld.2021.137098
  16. Novye fiziko-himicheskie i biotekhnologicheskie metody obrabotki pischevogo syr'ya i produktov (2019). Persianovskiy: Donskoy GAU, 183. Available at: http://www.dongau.ru/obuchenie/nauchnaya-biblioteka/Ucheb_posobiya/2019/Новые_физико-химические_Алексеев_АЛ_2019_182с..pdf
  17. Begeulov, M. Sh. (2006). Osnovy pererabotki semyan soi. Moscow: DeLi print, 181.
  18. Sujka, K., Koczoń, P., Ceglińska, A., Reder, M., Ciemniewska-Żytkiewicz, H. (2017). The Application of FT-IR Spectroscopy for Quality Control of Flours Obtained from Polish Producers. Journal of Analytical Methods in Chemistry, 2017, 1–9. doi: https://doi.org/10.1155/2017/4315678
  19. Dandachy, S., Mawlawi, H., Obeid, O. (2019). Effect of Processed Chickpea Flour Incorporation on Sensory Properties of Mankoushe Zaatar. Foods, 8 (5), 151. doi: https://doi.org/10.3390/foods8050151
  20. Ferreira, D. S., Galão, O. F., Pallone, J. A. L., Poppi, R. J. (2014). Comparison and application of near-infrared (NIR) and mid-infrared (MIR) spectroscopy for determination of quality parameters in soybean samples. Food Control, 35 (1), 227–232. doi: https://doi.org/10.1016/j.foodcont.2013.07.010
  21. Magomedov, G. O., Sadigova, M. K., Lukina, S. I., Kustov, V. Yu. (2013). Effect of disintegration wave grinding on fractional protein and amino acid composition of chickpea. Proceedings of the Voronezh State University of Engineering Technologies, 1, 94–97. Available at: https://www.vestnik-vsuet.ru/vguit/article/view/135
  22. G ́omez-Favela, M. A., Garc ́ıa-Armenta, E., Reyes-Moreno. C., Garz ́on-Tiznado, J. A., Perales-S ́anchez, J. X. K., Caro-Corrales, J. J., Guti ́errez-Dorado, R. (2017). Modelling of water absorption in chickpea (Cicer arietinum L) seeds grown in México's northwest. Revista Mexicana de Ingeniería Química, 16 (1), 179–191. doi: https://doi.org/10.24275/rmiq/alim810
  23. Tuğçe Cin, S., Topal, N. (2021). Determination of some Quality Characteristics in Chickpea (Cicer arietinum L.) Genotypes and Relationships between Characteristics. Turkish Journal of Agriculture - Food Science and Technology, 9 (1), 130–136. doi: https://doi.org/10.24925/turjaf.v9i1.130-136.3761
  24. GOST 33536-2015. Confectionery. Method for quantity determination of mesophilic aerobic and facultative-anaerobic microorganisms. Available at: https://docs.cntd.ru/document/1200124964
  25. Nikbakht Nasrabadi, M., Sedaghat Doost, A., Mezzenga, R. (2021). Modification approaches of plant-based proteins to improve their techno-functionality and use in food products. Food Hydrocolloids, 118, 106789. doi: https://doi.org/10.1016/j.foodhyd.2021.106789

Downloads

Published

2021-10-31

How to Cite

Omaraliyeva, A., Botbayeva, Z., Agedilova, M., Abilova, M., & Zhanaidarova, A. (2021). Determining the optimal parameters of ultra-high-frequency treatment of chickpeas for the production of gluten-free flour. Eastern-European Journal of Enterprise Technologies, 5(11 (113), 51–60. https://doi.org/10.15587/1729-4061.2021.241877

Issue

Section

Technology and Equipment of Food Production