A novel approach for solving decision-making problems with stochastic linear-fractional models
DOI:
https://doi.org/10.15587/1729-4061.2021.241916Keywords:
Stochastic Models, Fractional Programming Problems, Goal Programming, Joint Probability DistributionAbstract
Stochastic chance-constrained optimization has a wide range of real-world applications. In some real-world applications, the decision-maker has to formulate the problem as a fractional model where some or all of the coefficients are random variables with joint probability distribution. Therefore, these types of problems can deal with bi-objective problems and reflect system efficiency. In this paper, we present a novel approach to formulate and solve stochastic chance-constrained linear fractional programming models. This approach is an extension of the deterministic fractional model. The proposed approach, for solving these types of stochastic decision-making problems with the fractional objective function, is constructed using the following two-step procedure. In the first stage, we transform the stochastic linear fractional model into two stochastic linear models using the goal programming approach, where the first goal represents the numerator and the second goal represents the denominator for the stochastic fractional model. The resulting stochastic goal programming problem is formulated. The second stage implies solving stochastic goal programming problem, by replacing the stochastic parameters of the model with their expectations. The resulting deterministic goal programming problem is built and solved using Win QSB solver. Then, using the optimal value for the first and second goals, the optimal solution for the fractional model is obtained. An example is presented to illustrate our approach, where we assume the stochastic parameters have a uniform distribution. Hence, the proposed approach for solving the stochastic linear fractional model is efficient and easy to implement. The advantage of the proposed approach is the ability to use it for formulating and solving any decision-making problems with the stochastic linear fractional model based on transforming the stochastic linear model to a deterministic linear model, by replacing the stochastic parameters with their corresponding expectations and transforming the deterministic linear fractional model to a deterministic linear model using the goal programming approach
References
- Al-Salih, R., Bohner, M. (2018). Linear programming problems on time scales. Applicable Analysis and Discrete Mathematics, 12 (1), 192–204. doi: https://doi.org/10.2298/aadm170426003a
- Al-Salih, R., Bohner, M. J. (2019). Separated and state-constrained separated linear programming problems on time scales. Boletim Da Sociedade Paranaense de Matemática, 38 (4), 181–195. doi: https://doi.org/10.5269/bspm.v38i4.40414
- Al-Salih, R., Bohner, M. (2019). Linear fractional programming problems on time scales. Journal of Numerical Mathematics and Stochastics, 11 (1), 1–18. Available at: https://web.mst.edu/~bohner/papers/lfppots.pdf
- Hamed, Q. A., Al-Salih, R., Laith, W. (2020). The Analogue of Regional Economic Models in Quantum Calculus. Journal of Physics: Conference Series, 1530, 012075. doi: https://doi.org/10.1088/1742-6596/1530/1/012075
- Al-Salih, R., Habeeb, A., Laith, W. (2019). A Quantum Calculus Analogue of Dynamic Leontief Production Model with Linear Objective Function. Journal of Physics: Conference Series, 1234, 012102. doi: https://doi.org/10.1088/1742-6596/1234/1/012102
- Charnes, A., Cooper, W. W. (1959). Chance-Constrained Programming. Management Science, 6 (1), 73–79. doi: https://doi.org/10.1287/mnsc.6.1.73
- Gupta, S. N., Jain, A. K., Swarup, K. (1987). Stochastic linear fractional programming with the ratio of independent Cauchy variates. Naval Research Logistics, 34 (2), 293–305. doi: https://doi.org/10.1002/1520-6750(198704)34:2<293::aid-nav3220340212>3.0.co;2-0
- Iwamura, K., Liu, B. (1996). A genetic algorithm for chance constrained programming. Journal of Information and Optimization Sciences, 17 (2), 409–422. doi: https://doi.org/10.1080/02522667.1996.10699291
- Charles, V., Dutta, D. (2005). Linear Stochastic Fractional Programming with Sum-of-Probabilistic-Fractional Objective. Optimization Online. Available at: http://www.optimization-online.org/DB_FILE/2005/06/1142.pdf
- Charles, V., Dutta, D. (2006). Extremization of multi-objective stochastic fractional programming problem. Annals of Operations Research, 143 (1), 297–304. doi: https://doi.org/10.1007/s10479-006-7389-7
- Zhu, H., Huang, G. H. (2011). SLFP: A stochastic linear fractional programming approach for sustainable waste management. Waste Management, 31 (12), 2612–2619. doi: https://doi.org/10.1016/j.wasman.2011.08.009
- Charles, V., Yadavalli, V. S. S., Rao, M. C. L., Reddy, P. R. S. (2011). Stochastic Fractional Programming Approach to a Mean and Variance Model of a Transportation Problem. Mathematical Problems in Engineering, 2011, 1–12. doi: https://doi.org/10.1155/2011/657608
- Charles, V., Gupta, P. (2013). Optimization of chance constraint programming with sum-of-fractional objectives – An application to assembled printed circuit board problem. Applied Mathematical Modelling, 37 (5), 3564–3574. doi: https://doi.org/10.1016/j.apm.2012.07.043
- Ding, X., Wang, C. (2012). A Novel Algorithm of Stochastic Chance-Constrained Linear Programming and Its Application. Mathematical Problems in Engineering, 2012, 1–17. doi: https://doi.org/10.1155/2012/139271
- Mohamed, A. W. (2017). Solving stochastic programming problems using new approach to Differential Evolution algorithm. Egyptian Informatics Journal, 18 (2), 75–86. doi: https://doi.org/10.1016/j.eij.2016.09.002
- Zhang, C., Engel, B. A., Guo, P., Liu, X., Guo, S., Zhang, F., Wang, Y. (2018). Double-sided stochastic chance-constrained linear fractional programming model for managing irrigation water under uncertainty. Journal of Hydrology, 564, 467–475. doi: https://doi.org/10.1016/j.jhydrol.2018.07.024
- Ismail, M., El-Hefnawy, A., Saad, A. E.-N. (2018). New Deterministic Solution to a chance constrained linear programming model with Weibull Random Coefficients. Future Business Journal, 4 (1), 109–120. doi: https://doi.org/10.1016/j.fbj.2018.02.001
- Al Qahtani, H., El–Hefnawy, A., El–Ashram, M. M., Fayomi, A. (2019). A Goal Programming Approach to Multichoice Multiobjective Stochastic Transportation Problems with Extreme Value Distribution. Advances in Operations Research, 2019, 1–6. doi: https://doi.org/10.1155/2019/9714137
- Nasseri, S. H., Bavandi, S. (2018). Fuzzy Stochastic Linear Fractional Programming based on Fuzzy Mathematical Programming. Fuzzy Information and Engineering, 10 (3), 324–338. doi: https://doi.org/10.1080/16168658.2019.1612605
- Acharya, S., Belay, B., Mishra, R. (2019). Multi-objective probabilistic fractional programming problem involving two parameters cauchy distribution. Mathematical Modelling and Analysis, 24 (3), 385–403. doi: https://doi.org/10.3846/mma.2019.024
- Zhou, C., Huang, G., Chen, J. (2019). A Type-2 Fuzzy Chance-Constrained Fractional Integrated Modeling Method for Energy System Management of Uncertainties and Risks. Energies, 12 (13), 2472. doi: https://doi.org/10.3390/en12132472
- Mehrjerdi, Y. Z. (2021). A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 11 (4), 533. doi: https://doi.org/10.3934/naco.2020054
- Younsi-Abbaci, L., Moulaï, M. (2021). Solving the multi-objective stochastic interval-valued linear fractional integer programming problem. Asian-European Journal of Mathematics, 2250022. doi: https://doi.org/10.1142/s179355712250022x
- Barichard, V., Ehrgott, M., Gandibleux, X., T’Kindt, V. (Eds.) (2009). Multiobjective Programming and Goal Programming. Theoretical Results and Practical Applications. Springer, 298. doi: https://doi.org/10.1007/978-3-540-85646-7
- Laguel, Y., Malick, J., Ackooij, W. (2021). Chance constrained problems: a bilevel convex optimization perspective. arXiv.org. Available at: https://arxiv.org/pdf/2103.10832.pdf
- Charnes, A., Cooper, W. W. (1962). Programming with linear fractional functionals. Naval Research Logistics Quarterly, 9 (3-4), 181–186. doi: https://doi.org/10.1002/nav.3800090303
- Ponnaiah, P., Mohan, J. (2013). On Solving Linear Fractional Programming Problems. Modern Applied Science, 7 (6). doi: https://doi.org/10.5539/mas.v7n6p90
- Jaber, W. K., Hassan, I. H., Khraibet, T. J. (2021). Development of the complementary method to solve fractional linear programming problems. Journal of Physics: Conference Series, 1897 (1), 012053. doi: https://doi.org/10.1088/1742-6596/1897/1/012053
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Watheq Laith, Rasheed Al-Salih, Ali Habeeb
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.