Development and verification of mechanical characteristics of a composite material made of a thermoplastic matrix and short glass fibers
DOI:
https://doi.org/10.15587/1729-4061.2021.243149Keywords:
composite material, polycarbonate, short glass fibers, DIGIMAT, elastic modulusAbstract
The paper presents the results of computer modeling and prediction of the mechanical properties of composite materials with a polycarbonate matrix filled with short glass inclusions. At the micro-level, the influence of the volume of inclusions on the mechanical properties of the designed composite based on polycarbonate matrix is studied in the DIGIMAT (France) program. It was found that with a ratio of the sizes of inclusions in the range of 468÷60, the particles have a needle shape, and the material with such inclusions has a higher stress limit and elastic modulus than with a shape coefficient less than 50. The components of the fiber orientation tensor were also determined, at which the values of computer modeling are in good agreement with experimental data. The influence of the size of the finite element grid on the characteristics of the composite at the macro level was studied, and recommendations were given for choosing the size of the face of the finite element. The adequacy of computer models was confirmed by the results of field tests. The paper presents the results of testing flat samples made by injection molding technology. Mechanical tests were carried out for three variants of samples made of composite material based on a polycarbonate matrix with 10 %, 20 % and 30 % inclusions. The discrepancy between the experimental and computer results for samples with 10 %, 20 % content of short chopped fibers is explained by the influence of technological factors on the properties of the material at the macro-level.
The conducted research allowed us to develop a computer modeling technique used at the stage of development of polymer composites based on thermoplastic matrices with short glass inclusions
References
- Volkov, A. V., Parygin, A. G., Vikhliantsev, A. A. (2018). Analiz perspektivnykh napravlenii sovershenstvovaniia nasosnykh agregatov neftekhimicheskikh i neftepererabatyvaiuschikh proizvodstv. KHimicheskaia tekhnika, 10. Available at: http://chemtech.ru/analiz-perspektivnyh-napravlenij-sovershenstvovanija-nasosnyh-agregatov-neftehimicheskih-i-neftepererabatyvajushhih-proizvodstv1
- Cárdenas, D., Escárpita, A. A., Elizalde, H., Aguirre, J. J., Ahuett, H., Marzocca, P., Probst, O. (2011). Numerical validation of a finite element thin-walled beam model of a composite wind turbine blade. Wind Energy, 15 (2), 203–223. doi: http://doi.org/10.1002/we.462
- Rabochie kolesa nasosov iz polimernykh kompozitsii (2016). Stroitelnii resurs. Available at: http://spb-sovtrans.ru/polimernye-kompozicii/963-rabochie-kolesa-nasosov-iz-polimernyh-kompoziciy.html
- Ponomareva, N. R. (2010). Strukturno-mekhanicheskie osobennosti deformatsionnogo povedeniia kompozitsionnykh materialov na osnove poliolefinov i mineralnykh chastits. Moscow, 153. Available at: https://freereferats.ru/product_info.php?products_id=667
- Dong, X., Sui, G., Yun, Z., Wang, M., Guo, A., Zhang, J., Liu, J. (2016). Effect of temperature on the mechanical behavior of mullite fibrous ceramics with a 3D skeleton structure prepared by molding method. Materials & Design, 90, 942–948. doi: http://doi.org/10.1016/j.matdes.2015.11.043
- Eshelby, J. D. (1957). The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 241 (1226), 376–396. doi: http://doi.org/10.1098/rspa.1957.0133
- Jagath Narayana, K., Burela, R. G. (2019). Multi-scale modeling and simulation of natural fiber reinforced composites (Bio-composites). Journal of Physics: Conference Series, 1240, 012103. doi: http://doi.org/10.1088/1742-6596/1240/1/012103
- Jiang, C. P., Chen, F. L., Yan, P., Song, F. (2010). A four-phase confocal elliptical cylinder model for predicting the effective thermal conductivity of coated fibre composites. Philosophical Magazine, 90 (26), 3601–3615. doi: http://doi.org/10.1080/14786435.2010.492767
- Liu, Q., Lu, Z., Hu, Z., Li, J. (2013). Finite element analysis on tensile behaviour of 3D random fibrous materials: Model description and meso-level approach. Materials Science and Engineering: A, 587, 36–45. doi: http://doi.org/10.1016/j.msea.2013.07.087
- Muktinutalapati, N. R., Benini, E. (2011). Advances in gas turbine technology. Gas Turbines. doi: http://doi.org/10.5772/664
- Povetkin, V. V., Isametova, М. Е., Isayeva, I. N. Bukayeva, A. Z. (2018). Dynamic modeling of ball mill drive with regard to damping properties of its elements. Mining Informational and Analytical Bulletin, 5, 184–192. doi: http://doi.org/10.25018/0236-1493-2018-5-0-184-192
- Tserpes, K., Tzatzadakis, V. (2019). Computation of mechanical, thermal and electrical properties of CNT/polymer multifunctional nanocomposites using numerical and analytical models. MATEC Web of Conferences, 304, 01013. doi: http://doi.org/10.1051/matecconf/201930401013
- Lara-González, L. Á., Guillermo-Rodríguez, W., Pineda-Triana, Y., Peña-Rodríguez, G., Salazar, H. F. (2020). Optimization of the Tensile Properties of Polymeric Matrix Composites Reinforced with Magnetite Particles by Experimental Design. TecnoLógicas, 23 (48), 83–98. doi: http://doi.org/10.22430/22565337.1499
- Singh, U. P., Biswas, B. K., Ray, B. C. (2009). Evaluation of mechanical properties of polypropylene filled with wollastonite and silicon rubber. Materials Science and Engineering: A, 501 (1-2), 94–98. doi: http://doi.org/10.1016/j.msea.2008.09.063
- Lurie, S. A., Rabinsckiy, L. N., Solyaev, Y. O., Buznik, V. M., Lizunova, D. V. (2016). Methodology of numerical modelling of mechanical properties of porous heat-shielding material based on ceramic fibers. PNRPU Mechanics Bulletin, 4, 263–274. doi: http://doi.org/10.15593/perm.mech/2016.4.15
- Desiatkov, A. V., Ponamareva, N. R., Goncharuk, G. P., Obolonkova, E. S., Budnitskii, Iu. M., Serenko, O. A. (2009). Vliianie razmera chastits na mekhanicheskie svoistva kompozitov na osnove odnorodnodeformiruschegosia polimera. Uspekhi v khimii i khimicheskoi tekhnologii, XXIII (5 (98)), 32–35. Available at: https://cyberleninka.ru/article/n/vliyanie-razmera-chastits-na-mehanicheskie-svoystva-kompozitov-na-osnove-odnorodno-deformiruyuschegosya-polimera
- Skvortsov, Iu. V., Glushkov, S. V., Khromov, A. I. (2012). Modelirovanie kompozitnykh elementov konstruktsii i analiz ikh razrushenii v SAE-sistemakh MSC.Patran-Nastran i ANSYS. Samara.
- Ozawa, Y., Watanabe, M., Kikuchi, T., Ishiwatari, H. (2010). Mechanical and thermal properties of composite material system reinforced with micro glass balloons. IOP Conference Series: Materials Science and Engineering, 10, 012094. doi: http://doi.org/10.1088/1757-899x/10/1/012094
- Matveeva, U. A., Van Khattum, F. (2011). Razrabotka i analiz strukturnykh modelei kompozitnykh materialov na osnove uglerodnykh nanotrubok.
- Nazarov, S. A. (2009). Teorema Eshelbi i zadacha ob optimalnoi zaplate. Algebra ianaliz, 21 (5), 155–195. Available at: http://www.mathnet.ru/links/b4ab83583efec8059ed7924e3cec2ada/aa1157.pdf
- Rublenoe steklovolokno. Available at: https://glass-tex.ru/index.php/49–carousel/2015–10–23–08–17–23/151–rublenoe-steklovolokno
- Mashkov, Iu. K. (2010). Mekhanicheskie i tribotekhnicheskie svoistva polimernykh kompozitsionnykh materialov na osnove PTFE, optimizatsiia ikh sostava i tekhnologii. Vestnik SibADI, 4 (18), 17–21.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Madina Isametova, Gazel Abilezova, Nikolay Dishovsky, Petar Velev
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.