Development and verification of mechanical characteristics of a composite material made of a thermoplastic matrix and short glass fibers

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.243149

Keywords:

composite material, polycarbonate, short glass fibers, DIGIMAT, elastic modulus

Abstract

The paper presents the results of computer modeling and prediction of the mechanical properties of composite materials with a polycarbonate matrix filled with short glass inclusions. At the micro-level, the influence of the volume of inclusions on the mechanical properties of the designed composite based on polycarbonate matrix is studied in the DIGIMAT (France) program. It was found that with a ratio of the sizes of inclusions in the range of 468÷60, the particles have a needle shape, and the material with such inclusions has a higher stress limit and elastic modulus than with a shape coefficient less than 50. The components of the fiber orientation tensor were also determined, at which the values of computer modeling are in good agreement with experimental data. The influence of the size of the finite element grid on the characteristics of the composite at the macro level was studied, and recommendations were given for choosing the size of the face of the finite element. The adequacy of computer models was confirmed by the results of field tests. The paper presents the results of testing flat samples made by injection molding technology. Mechanical tests were carried out for three variants of samples made of composite material based on a polycarbonate matrix with 10 %, 20 % and 30 % inclusions. The discrepancy between the experimental and computer results for samples with 10 %, 20 % content of short chopped fibers is explained by the influence of technological factors on the properties of the material at the macro-level.

The conducted research allowed us to develop a computer modeling technique used at the stage of development of polymer composites based on thermoplastic matrices with short glass inclusions

Author Biographies

Madina Isametova, Satbayev University

PhD, Associate Professor

Department of Industrial Engineering

Gazel Abilezova, Satbayev University

Postgraduate Student

Department of Industrial Engineering

Nikolay Dishovsky, University of Chemical Technology and Metallurgy

Doctor of Technical Sciences, Professor

Department of Polymer Engineering

Petar Velev, University of Chemical Technology and Metallurgy

PhD, Associate Professor

Department of Polymer Engineering

References

  1. Volkov, A. V., Parygin, A. G., Vikhliantsev, A. A. (2018). Analiz perspektivnykh napravlenii sovershenstvovaniia nasosnykh agregatov neftekhimicheskikh i neftepererabatyvaiuschikh proizvodstv. KHimicheskaia tekhnika, 10. Available at: http://chemtech.ru/analiz-perspektivnyh-napravlenij-sovershenstvovanija-nasosnyh-agregatov-neftehimicheskih-i-neftepererabatyvajushhih-proizvodstv1
  2. Cárdenas, D., Escárpita, A. A., Elizalde, H., Aguirre, J. J., Ahuett, H., Marzocca, P., Probst, O. (2011). Numerical validation of a finite element thin-walled beam model of a composite wind turbine blade. Wind Energy, 15 (2), 203–223. doi: http://doi.org/10.1002/we.462
  3. Rabochie kolesa nasosov iz polimernykh kompozitsii (2016). Stroitelnii resurs. Available at: http://spb-sovtrans.ru/polimernye-kompozicii/963-rabochie-kolesa-nasosov-iz-polimernyh-kompoziciy.html
  4. Ponomareva, N. R. (2010). Strukturno-mekhanicheskie osobennosti deformatsionnogo povedeniia kompozitsionnykh materialov na osnove poliolefinov i mineralnykh chastits. Moscow, 153. Available at: https://freereferats.ru/product_info.php?products_id=667
  5. Dong, X., Sui, G., Yun, Z., Wang, M., Guo, A., Zhang, J., Liu, J. (2016). Effect of temperature on the mechanical behavior of mullite fibrous ceramics with a 3D skeleton structure prepared by molding method. Materials & Design, 90, 942–948. doi: http://doi.org/10.1016/j.matdes.2015.11.043
  6. Eshelby, J. D. (1957). The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 241 (1226), 376–396. doi: http://doi.org/10.1098/rspa.1957.0133
  7. Jagath Narayana, K., Burela, R. G. (2019). Multi-scale modeling and simulation of natural fiber reinforced composites (Bio-composites). Journal of Physics: Conference Series, 1240, 012103. doi: http://doi.org/10.1088/1742-6596/1240/1/012103
  8. Jiang, C. P., Chen, F. L., Yan, P., Song, F. (2010). A four-phase confocal elliptical cylinder model for predicting the effective thermal conductivity of coated fibre composites. Philosophical Magazine, 90 (26), 3601–3615. doi: http://doi.org/10.1080/14786435.2010.492767
  9. Liu, Q., Lu, Z., Hu, Z., Li, J. (2013). Finite element analysis on tensile behaviour of 3D random fibrous materials: Model description and meso-level approach. Materials Science and Engineering: A, 587, 36–45. doi: http://doi.org/10.1016/j.msea.2013.07.087
  10. Muktinutalapati, N. R., Benini, E. (2011). Advances in gas turbine technology. Gas Turbines. doi: http://doi.org/10.5772/664
  11. Povetkin, V. V., Isametova, М. Е., Isayeva, I. N. Bukayeva, A. Z. (2018). Dynamic modeling of ball mill drive with regard to damping properties of its elements. Mining Informational and Analytical Bulletin, 5, 184–192. doi: http://doi.org/10.25018/0236-1493-2018-5-0-184-192
  12. Tserpes, K., Tzatzadakis, V. (2019). Computation of mechanical, thermal and electrical properties of CNT/polymer multifunctional nanocomposites using numerical and analytical models. MATEC Web of Conferences, 304, 01013. doi: http://doi.org/10.1051/matecconf/201930401013
  13. Lara-González, L. Á., Guillermo-Rodríguez, W., Pineda-Triana, Y., Peña-Rodríguez, G., Salazar, H. F. (2020). Optimization of the Tensile Properties of Polymeric Matrix Composites Reinforced with Magnetite Particles by Experimental Design. TecnoLógicas, 23 (48), 83–98. doi: http://doi.org/10.22430/22565337.1499
  14. Singh, U. P., Biswas, B. K., Ray, B. C. (2009). Evaluation of mechanical properties of polypropylene filled with wollastonite and silicon rubber. Materials Science and Engineering: A, 501 (1-2), 94–98. doi: http://doi.org/10.1016/j.msea.2008.09.063
  15. Lurie, S. A., Rabinsckiy, L. N., Solyaev, Y. O., Buznik, V. M., Lizunova, D. V. (2016). Methodology of numerical modelling of mechanical properties of porous heat-shielding material based on ceramic fibers. PNRPU Mechanics Bulletin, 4, 263–274. doi: http://doi.org/10.15593/perm.mech/2016.4.15
  16. Desiatkov, A. V., Ponamareva, N. R., Goncharuk, G. P., Obolonkova, E. S., Budnitskii, Iu. M., Serenko, O. A. (2009). Vliianie razmera chastits na mekhanicheskie svoistva kompozitov na osnove odnorodnodeformiruschegosia polimera. Uspekhi v khimii i khimicheskoi tekhnologii, XXIII (5 (98)), 32–35. Available at: https://cyberleninka.ru/article/n/vliyanie-razmera-chastits-na-mehanicheskie-svoystva-kompozitov-na-osnove-odnorodno-deformiruyuschegosya-polimera
  17. Skvortsov, Iu. V., Glushkov, S. V., Khromov, A. I. (2012). Modelirovanie kompozitnykh elementov konstruktsii i analiz ikh razrushenii v SAE-sistemakh MSC.Patran-Nastran i ANSYS. Samara.
  18. Ozawa, Y., Watanabe, M., Kikuchi, T., Ishiwatari, H. (2010). Mechanical and thermal properties of composite material system reinforced with micro glass balloons. IOP Conference Series: Materials Science and Engineering, 10, 012094. doi: http://doi.org/10.1088/1757-899x/10/1/012094
  19. Matveeva, U. A., Van Khattum, F. (2011). Razrabotka i analiz strukturnykh modelei kompozitnykh materialov na osnove uglerodnykh nanotrubok.
  20. Nazarov, S. A. (2009). Teorema Eshelbi i zadacha ob optimalnoi zaplate. Algebra ianaliz, 21 (5), 155–195. Available at: http://www.mathnet.ru/links/b4ab83583efec8059ed7924e3cec2ada/aa1157.pdf
  21. Rublenoe steklovolokno. Available at: https://glass-tex.ru/index.php/49–carousel/2015–10–23–08–17–23/151–rublenoe-steklovolokno
  22. Mashkov, Iu. K. (2010). Mekhanicheskie i tribotekhnicheskie svoistva polimernykh kompozitsionnykh materialov na osnove PTFE, optimizatsiia ikh sostava i tekhnologii. Vestnik SibADI, 4 (18), 17–21.

Downloads

Published

2021-10-31

How to Cite

Isametova, M., Abilezova, G., Dishovsky, N. ., & Velev, P. (2021). Development and verification of mechanical characteristics of a composite material made of a thermoplastic matrix and short glass fibers. Eastern-European Journal of Enterprise Technologies, 5(12(113), 30–38. https://doi.org/10.15587/1729-4061.2021.243149

Issue

Section

Materials Science