On the dynamic properties of the asymmetrically mounted rotor with inertial anisotropy

Authors

  • Александр Николаевич Горбенко Kerch state maritime technological university Ordgonikidze st., 82, Kerch, KSMTU, 98309, Russian Federation https://orcid.org/0000-0002-8584-7387

DOI:

https://doi.org/10.15587/1729-4061.2014.24484

Keywords:

gyrorotor, inertial anisotropy, stability, oscillations, moments of inertia, critical rates

Abstract

The dynamics of the rotor, which has unequal moments of inertia about its transverse axis is considered in the paper. The analysis is performed considering an asymmetric placement of the rotor relative to the supports. The study is based on the dimensionless equations of spatial motion of the anisotropic rotor in a rotating coordinate system. An exact analytical expression for the critical rotation rate of the inertial-anisotropic rotor is obtained. Analysis of this expression has shown that the inertial-anisotropic rotor may have from one to four critical direct precession rates. The influence of the rotor type, its layout chart and anisotropy factor on the number and values of the critical rates is studied. To investigate the stability, the Lyapunov's method of the first approximation of perturbation equations was used. Basic necessary stability condition for the case of asymmetric mounting of the rotor in an analytical form is obtained. The analysis has shown that the main instability region is located between dual critical rates of angular oscillations of the anisotropic rotor. In general, inertial-anisotropic rotor may have up to three instability regions. The presented analytical and numerical study complements the existing dynamics theory of rotary machines. The obtained results allow more reasonably design and assign rational technological tolerances for manufacturing, assembly and erection of the rotors.

Author Biography

Александр Николаевич Горбенко, Kerch state maritime technological university Ordgonikidze st., 82, Kerch, KSMTU, 98309

Candidate of technical sciences, professor

Department of ship power plants

References

  1. Диментберг, Ф. М. Колебания машин [Текст] / Ф. М. Диментберг, К. Т. Шаталов, А. А. Гусаров. – М: Машиностроение, 1964. – 308 с.
  2. Вибрации в технике [Текст]: справ. Том 3 / М.: Машиностроение, 1980. – 544 с.
  3. Childs, D. Turbomachinery Rotordynamics: Phenomena, Modeling and Analysis [Text] / D. Childs. – New York: Wiley, 1993. – 476 p.
  4. Кренделл, С. Об устойчивости вращения ротора, обладающего несимметрией инерции и несимметрией жесткости вала [Текст] / С. Кренделл, П. Броузенс // Прикладная механика. – 1961. – № 4. – С. 97–101.
  5. Black, H. Vibration of a rotating asymmetric shaft supported in asymmetric bearing [Text] / H. Black, A. Ternan // J. Mech. Eng. Sci. – 1968. – Vol. 10, № 3. – P. 252–261.
  6. Sanches, L. Instability zones for isotropic and
  7. anisotropic multibladed rotor configurations [Text] / L. Sanches, G. Michon, A. Berlioz, D. Alazard // Mechanism and Machine Theory. – 2011. – Vol. 46, Issue 8. – P. 1054–1065.
  8. Genta, G. Whirling of unsymmetrical rotors: a finite element approach based on complex coordinates [Text] / G. Genta // Journal of Sound and Vibration. – 1988. – Vol. 124, Issue 1. – P. 27–53.
  9. Genta, G. Dynamics of Rotating Systems [Text] / G. Genta. – New York: Springer, 2005. – 658 p.
  10. Lazarus, A. A 3D finite element model for the vibration analysis of asymmetric rotating machines [Text] / A. Lazarus, B. Prabel, D. Combescure // Journal of Sound and Vibration. – 2010. – Vol. 329. – P. 3780–3797.
  11. Горбенко, А. Н. О допустимом уровне инерционной анизотропии гироскопического ротора [Текст] / А. Н. Горбенко // Авиационно-космическая техника и технология. – 2013. – № 7 (104). – С. 61–66.
  12. Филимонихин, Г. Б. Влияние массы шаров автобалансира на структуру уравнений движения двухопорного ротора [Текст] / Г. Б. Филимонихин, А. Н. Горбенко // Автоматизация производственных процессов в машиностроении и приборостроении: Украинский межведом. н.-техн. сб. – 2011. – Вып. 45. – С. 478–488.
  13. Корн, Г. Справочник по математике для научных работников и инженеров [Текст] / Г. Корн, Т. Корн. – М.: Наука, 1968. – 720 с.
  14. Dimentberg, F. M., Shatalov, K. T., Gusarov, A. A. (1964). Oscillations of machines. Moscow, USSR: Mashinostroenie, 308.
  15. Vibrations in the technique (1980). Vol. 3. Moscow, USSR: Mashinostroenie, 544.
  16. Childs, D. (1993). Turbomachinery Rotordynamics: Phenomena, Modeling and Analysis. New York: Wiley, 476.
  17. Crandall, S., Brosens, P. (1961). On the stability of the rotor having inertia asymmetry and stiffness asymmetry of the shaft. Applied mechanics. Moscow, USSR: Mir, 4, 97–101.
  18. Black, H., Ternan, A. (1968). Vibration of a rotating asymmetric shaft supported in asymmetric bearing. J. Mech. Eng. Sci., 10 (3), 252–261.
  19. Sanches, L., Michon, G., Berlioz, A., Alazard, D. (2011). Instability zones for isotropic and anisotropic multibladed rotor configurations. Mechanism and Machine Theory, 46 (8), 1054–1065.
  20. Genta, G. (1988). Whirling of unsymmetrical rotors: a finite element approach based on complex coordinates. Journal of Sound and Vibration, 124 (1), 27–53.
  21. Genta, G. (2005). Dynamics of Rotating Systems. New York: Springer, 658.
  22. Lazarus, A., Prabel, B., Combescure, D. (2010). A 3D finite element model for the vibration analysis of asymmetric rotating machines. Journal of Sound and Vibration, 329, 3780–3797.
  23. Gorbenko, A. N. (2013). On the permissible level of anisotropy of the gyroscopic inertia of the rotor. Aerospace technics and technology, 7 (104), 61–66.
  24. Filimonikhin, G. B., Gorbenko, A. N. (2011). Effect of the balls mass of the auto-balancer on structure of the motion equations of the rotor on two supports. Automation of production processes in machine building and instrument: Ukrainian interdepartmental scientific and technical collection. Lvov: National university "Lvovskaya polytechnika", 45, 478–488.
  25. Korn, G., Korn, T. (1968). Mathematical Handbook for Scientists and Engineers. Moscow, USSR: Nauka, 720.

Published

2014-06-20

How to Cite

Горбенко, А. Н. (2014). On the dynamic properties of the asymmetrically mounted rotor with inertial anisotropy. Eastern-European Journal of Enterprise Technologies, 3(7(69), 8–16. https://doi.org/10.15587/1729-4061.2014.24484

Issue

Section

Applied mechanics