Determining patterns in the formation of functional-technological properties of a fat-based semi-finished product in the technology of sponge cake products

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.246006

Keywords:

high-oleic type oil, fat-based semi-finished product, sponge-cake batter products, beeswax

Abstract

This paper reports the development of a technology for a fat-based semi-finished product, which was used in the manufacturing of products made from butter sponge-cake batter. When combining high-oleic type oils, beeswax, and monoglyceride, the dense emulsion "oleogel" is formed, which can replace fatty products in flour products technology. The fat-based semi-finished product devised fully matches the technological functions of margarine.

The expediency of using sunflower oil of high-oleic type (90.0 %) was established, as a base for the fat-based semi-finished product, as well as the rational percentage of organogelators (monoglyceride, 7 %, beeswax, 3 %), which would ensure the production of a fat-based semi-finished product for the target purpose.

The feasibility of using a fat-based semi-finished product has been determined in order to solve two tasks: the introduction of a fat-based semi-finished product that contains high-oleic sunflower oil and has several functional benefits of a healthy diet. The fat-based semi-finished product devised could replace butter in the butter sponge cake technology.

It was established that the use of the fat-based semi-finished product ensures the production of products from sweet dough, characterized by the highest values of specific volume and porosity. Applying the fat-based semi-finished product makes it possible to increase the yield of finished products (shrinkage decreases by 19.5 % compared to the control sample, to 18.4 %). The parameters for storing finished products from sweet dough containing the fat-based semi-finished product have been substantiated. It was determined that intensive fat release begins on day 7 of storage of finished products. After 10 days of storage, the experimental samples of sponge cakes release 2.0 times less fat than the control sample.

The technology for making products from sweet dough using the fat-based semi-finished product has been developed.

Author Biographies

Aliona Dikhtyar, State Biotechnological University

PhD, Senior Lecturer

Department of Food Technology in the Restaurant Industry

Svetlana Andrieieva, State Biotechnological University

PhD, Associate Professor

Department of Food Technology in the Restaurant Industry

Natalia Fedak, State Biotechnological University

PhD, Professor

Department of Food Technology in the Restaurant Industry

Olga Grinchenko, State Biotechnological University

Doctor of Technical Sciences, Professor

Department of Food Technology in the Restaurant Industry

Yevgen Pyvovarov, State Biotechnological University

Doctor of Technical Sciences, Professor

Department of Food Technology in the Restaurant Industry

References

  1. Radchenko, A., Iurchenko, S. (2021). Study of elamine and stevioside effect on the viscosity of sponge semi-finished products. Progressive engineering and technology of food production enterprises, catering business and trade, 1 (33), 177–187. Available at: https://elib.hduht.edu.ua/bitstream/123456789/6573/1/15.pdf
  2. Kravchenko, M., Piddubnuy, V., Romanovskaya, O. (2017). Structural and mechanical properties of egg sponge dough with flour "Zdorovia". The International Scientific-Practical Journal "Commodities and Markets", 2, 86–96. Available at: http://nbuv.gov.ua/UJRN/tovary_2017_2%281%29__11
  3. Mykhailo, K., Olha, R., Tetiana, M. (2021). Rheological properties of biscuits dough with spelt flour. The International Scientific-Practical Journal "Commodities and Markets", 2, 94–102. doi: https://doi.org/10.31617/tr.knute.2021(38)09
  4. Vukušić Pavičić, T., Grgić, T., Ivanov, M., Novotni, D., Herceg, Z. (2021). Influence of Flour and Fat Type on Dough Rheology and Technological Characteristics of 3D-Printed Cookies. Foods, 10 (1), 193. doi: https://doi.org/10.3390/foods10010193
  5. Iorgacheva, E. G., Makarova, O. V., Kotuzaki, E. N. (2014). Vliyanie nekhlebopekarnyh vidov muki na izmenenie kachestva biskvitnyh polufabrikatov pri hranenii. Nauchnye trudy Odesskoy pischevoy akademii, 1 (46), 112–117. Available at: http://tb.chdu.edu.ua/index.php/2073-8730/article/view/40591
  6. Tkachenko, A., Syrokhman, I., Lozova, T., Ofilenko, N., Goryachova, E., Hmelnitska, Y., Shurduk, I. (2019). Development of formulations for sponge cakes made from organic raw materials using the principles of a food products safety management system. Eastern-European Journal of Enterprise Technologies, 1 (11 (97)), 60–70. doi: https://doi.org/10.15587/1729-4061.2019.155775
  7. Fil, M. I., Koropetska, T. O. (2018). Innovative approach to the technologies of new biscuit roll. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series "Food Technologies", 20 (85), 81–85. doi: https://doi.org/10.15421/nvlvet8515
  8. Chugunova, O. V., Zavorohina, N. V., Mysakov, D. S. (2015). Ispol'zovanie ksantanovoy kamedi v kachestve strukturoobrazovatelya pri proizvodstve biskvitnogo polufabrikata. Konditerskoe proizvodstvo, 2, 14–17.
  9. Mysakov, D. S., Chugunova, O. V., Zavorohina, N. V., Pankrat'eva, N. A. (2014). Ispol'zovanie ksantanovoy kamedi v kachestve strukturoobrazovatelya pri proizvodstve biskvitnogo polufabrikata. Novye tekhnologii. Available at: https://cyberleninka.ru/article/n/ispolzovanie-ksantanovoy-kamedi-v-kachestve-strukturoobrazovatelya-pri-proizvodstve-biskvitnogo-polufabrikata
  10. Stankov, S., Baeva, M., Petkova, N. (2018). Physical and sensory characteristics of sponge cakes containing an additive of modified fructooligosaccharides. International Food Research Journal, 25 (5), 2099–2103. Available at: http://www.ifrj.upm.edu.my/25%20(05)%202018/(45).pdf
  11. Maksyutova, M. A., Leonova, S. A., Nikiforova, T. A. (2018). Usovershenstvovanie retseptury biskvitnogo polufabrikata. Hleboprodukty, 9, 51–54. Available at: https://khlebprod.ru/289-zhurnaly-2018/9-18/3451-usovershenstvovanie-retseptury-biskvitnogo-polufabrikata
  12. Adeniyi, P., Obatolu, V. A., Bakare, A. D., Lawal, S. B., Bolaji, A. T., Banjo, O. A. (2017). Fortification of Carbohydrate-rich Foods (Spaghetti and Tapioca Pearls) with Soybean Flour, a Timely and Evergreen Necessity. Journal of Food Security, 5 (2), 43–50. Available at: http://pubs.sciepub.com/jfs/5/2/4/index.html
  13. Kakie zhe pischevye dobavki nailuchshe uvelichivayut srok hraneniya muchnyh konditerskih izdeliy (2013). Khlibopekarska i kondyterska promyslovist Ukrainy, 9, 12–13.
  14. Pușcaș, A., Mureșan, V., Socaciu, C., Muste, S. (2020). Oleogels in Food: A Review of Current and Potential Applications. Foods, 9 (1), 70. doi: https://doi.org/10.3390/foods9010070
  15. Sirbu, A., Arghire, C. (2017). Functional bread: Effect of inulin-type products addition on dough rheology and bread quality. Journal of Cereal Science, 75, 220–227. doi: https://doi.org/10.1016/j.jcs.2017.03.029
  16. Ktenioudaki, A., Alvarez-Jubete, L., Smyth, T. J., Kilcawley, K., Rai, D. K., Gallagher, E. (2015). Application of bioprocessing techniques (sourdough fermentation and technological aids) for brewer's spent grain breads. Food Research International, 73, 107–116. doi: https://doi.org/10.1016/j.foodres.2015.03.008
  17. Goralchuk, A., Andreeva, S., Dikhtiar, A., Riabets, O., Chekanov, M. (2019). The prospects of trans fats replacement in food products. Prohresyvni tekhnika ta tekhnolohiyi kharchovykh vyrobnytstv restorannoho hospodarstva i torhivli, 2 (30), 7–23. Available at: https://elib.hduht.edu.ua/bitstream/123456789/5052/1/1.pdf
  18. Marangoni, A. G. (2012). Organogels: An Alternative Edible Oil-Structuring Method. Journal of the American Oil Chemists’ Society, 89 (5), 749–780. doi: https://doi.org/10.1007/s11746-012-2049-3
  19. Patel, A. R., Dewettinck, K. (2016). Edible oil structuring: an overview and recent updates. Food & Function, 7 (1), 20–29. doi: https://doi.org/10.1039/c5fo01006c
  20. Patel, A. R. (Ed.) (2018). Edible Oil Structuring: Concepts, Methods and Applications. Royal Society of Chemistry. doi: https://doi.org/10.1039/9781788010184
  21. Yılmaz, E., Öǧütcü, M. (2014). Oleogels of virgin olive oil with carnauba wax and monoglyceride as spreadable products. Grasas y Aceites, 65 (3), e040. doi: https://doi.org/10.3989/gya.0349141
  22. Gómez-Estaca, J., Pintado, T., Jiménez-Colmenero, F., Cofrades, S. (2020). The effect of household storage and cooking practices on quality attributes of pork burgers formulated with PUFA- and curcumin-loaded oleogels as healthy fat substitutes. LWT, 119, 108909. doi: https://doi.org/10.1016/j.lwt.2019.108909
  23. O’Sullivan, C. M., Barbut, S., Marangoni, A. G. (2016). Edible oleogels for the oral delivery of lipid soluble molecules: Composition and structural design considerations. Trends in Food Science & Technology, 57, 59–73. doi: https://doi.org/10.1016/j.tifs.2016.08.018
  24. Patel, A. R. (2018). Shellac-Based Oleogels. Edible Oleogels, 173–192. doi: https://doi.org/10.1016/b978-0-12-814270-7.00007-1
  25. Öğütcü, M., Arifoğlu, N., Yılmaz, E. (2015). Preparation and Characterization of Virgin Olive Oil-Beeswax Oleogel Emulsion Products. Journal of the American Oil Chemists’ Society, 92 (4), 459–471. doi: https://doi.org/10.1007/s11746-015-2615-6
  26. Da Pieve, S., Calligaris, S., Panozzo, A., Arrighetti, G., Nicoli, M. C. (2011). Effect of monoglyceride organogel structure on cod liver oil stability. Food Research International, 44 (9), 2978–2983. doi: https://doi.org/10.1016/j.foodres.2011.07.011
  27. Lupi, F. R., Gabriele, D., Greco, V., Baldino, N., Seta, L., de Cindio, B. (2013). A rheological characterisation of an olive oil/fatty alcohols organogel. Food Research International, 51 (2), 510–517. doi: https://doi.org/10.1016/j.foodres.2013.01.013
  28. Hwang, H.-S., Kim, S., Singh, M., Winkler-Moser, J. K., Liu, S. X. (2011). Organogel Formation of Soybean Oil with Waxes. Journal of the American Oil Chemists’ Society, 89 (4), 639–647. doi: https://doi.org/10.1007/s11746-011-1953-2
  29. Davidovich-Pinhas, M., Barbut, S., Marangoni, A. G. (2016). Development, Characterization, and Utilization of Food-Grade Polymer Oleogels. Annual Review of Food Science and Technology, 7 (1), 65–91. doi: https://doi.org/10.1146/annurev-food-041715-033225
  30. Davidovich-Pinhas, M. (2019). Oil structuring using polysaccharides. Current Opinion in Food Science, 27, 29–35. doi: https://doi.org/10.1016/j.cofs.2019.04.006
  31. Demirkesen, I., Mert, B. (2019). Recent developments of oleogel utilizations in bakery products. Critical Reviews in Food Science and Nutrition, 60 (14), 2460–2479. doi: https://doi.org/10.1080/10408398.2019.1649243
  32. Sanz, T., Quiles, A., Salvador, A., Hernando, I. (2017). Structural changes in biscuits made with cellulose emulsions as fat replacers. Food Science and Technology International, 23 (6), 480–489. doi: https://doi.org/10.1177/1082013217703273
  33. Mao, L., Lu, Y., Cui, M., Miao, S., Gao, Y. (2019). Design of gel structures in water and oil phases for improved delivery of bioactive food ingredients. Critical Reviews in Food Science and Nutrition, 60 (10), 1651–1666. doi: https://doi.org/10.1080/10408398.2019.1587737
  34. Marangoni, A. G., Garti, N. (Eds.) (2011). Edible Oleogels: Structure and Health Implications. AOCS Press. doi: https://doi.org/10.1016/C2015-0-02413-3
  35. Toro-Vazquez, J. F., Morales-Rueda, J., Torres-Martínez, A., Charó-Alonso, M. A., Mallia, V. A., Weiss, R. G. (2013). Cooling Rate Effects on the Microstructure, Solid Content, and Rheological Properties of Organogels of Amides Derived from Stearic and (R)-12-Hydroxystearic Acid in Vegetable Oil. Langmuir, 29 (25), 7642–7654. doi: https://doi.org/10.1021/la400809a
  36. Taguchi, K., Toda, A., Hondoh, H., Ueno, S., Sato, K. (2021). Kinetic Study on Alpha-Form Crystallization of Mixed-Acid Triacylglycerols POP, PPO, and Their Mixture. Molecules, 26 (1), 220. doi: https://doi.org/10.3390/molecules26010220
  37. Dichtyar, A., Fedak, N., Pyvovarov, Y., Stepankova, G., Yarantseva, Y. (2017). Research of the effects of technological factors on the quality indices of high oleic sunflower oil. Technology Audit and Production Reserves, 5 (3 (37)), 40–48. doi: https://doi.org/10.15587/2312-8372.2017.112912
  38. Hwang, H.-S., Singh, M., Bakota, E. L., Winkler-Moser, J. K., Kim, S., Liu, S. X. (2013). Margarine from Organogels of Plant Wax and Soybean Oil. Journal of the American Oil Chemists’ Society, 90 (11), 1705–1712. doi: https://doi.org/10.1007/s11746-013-2315-z
  39. Singh, A., Auzanneau, F.-I., Rogers, M. A. (2017). Advances in edible oleogel technologies – A decade in review. Food Research International, 97, 307–317. doi: https://doi.org/10.1016/j.foodres.2017.04.022
  40. Scholten, E. (2019). Edible oleogels: how suitable are proteins as a structurant? Current Opinion in Food Science, 27, 36–42. doi: https://doi.org/10.1016/j.cofs.2019.05.001
  41. Bemer, H. L., Limbaugh, M., Cramer, E. D., Harper, W. J., Maleky, F. (2016). Vegetable organogels incorporation in cream cheese products. Food Research International, 85, 67–75. doi: https://doi.org/10.1016/j.foodres.2016.04.016

Downloads

Published

2021-12-28

How to Cite

Dikhtyar, A., Andrieieva, S., Fedak, N., Grinchenko, O., & Pyvovarov, Y. (2021). Determining patterns in the formation of functional-technological properties of a fat-based semi-finished product in the technology of sponge cake products. Eastern-European Journal of Enterprise Technologies, 6(11 (114), 15–31. https://doi.org/10.15587/1729-4061.2021.246006

Issue

Section

Technology and Equipment of Food Production