Development of object state evaluation method in intelligent decision support systems

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.246421

Keywords:

decision support system, artificial neural networks, genetic algorithm, population

Abstract

Accurate and objective object analysis requires multi-parameter estimation with significant computational costs. A methodological approach to improve the accuracy of assessing the state of the monitored object is proposed. This methodological approach is based on a combination of fuzzy cognitive models, advanced genetic algorithm and evolving artificial neural networks. The methodological approach has the following sequence of actions: building a fuzzy cognitive model; correcting the fuzzy cognitive model and training knowledge bases. The distinctive features of the methodological approach are that the type of data uncertainty and noise is taken into account while constructing the state of the monitored object using fuzzy cognitive models. The novelties while correcting fuzzy cognitive models using a genetic algorithm are taking into account the type of data uncertainty, taking into account the adaptability of individuals to iteration, duration of the existence of individuals and topology of the fuzzy cognitive model. The advanced genetic algorithm increases the efficiency of correcting factors and the relationships between them in the fuzzy cognitive model. This is achieved by finding solutions in different directions by several individuals in the population. The training procedure consists in learning the synaptic weights of the artificial neural network, the type and parameters of the membership function and the architecture of individual elements and the architecture of the artificial neural network as a whole. The use of the method allows increasing the efficiency of data processing at the level of 16–24 % using additional advanced procedures. The proposed methodological approach should be used to solve the problems of assessing complex and dynamic processes characterized by a high degree of complexity.

Supporting Agency

  • Авторський колектив висловлює подяку за надання допомоги в підготовці статті: – доктору технічних наук, професору Кувшинову Олексію Вікторовичу – заступнику начальника навчально-наукового інституту Національного університету оборони України імені Івана Черняховського; – доктору технічних наук, професору Ротштейну Олександру Петровичу –професору Ієрусалимського політехнічного інституту Махон Лев; – кандидату технічних наук, доценту Башкирову Олександру Миколайовичу – провідному науковому співробітнику Центрального науково-дослідного інституту озброєння та військової техніки Збройних Сил України.

Author Biographies

Yurii Zhuravskyi, Zhytomyr Military Institute named after S. P. Koroliov

Doctor of Technical Sciences, Senior Researcher, Head of Department

Department of Electrical Engineering and Electronics

Oleg Sova, Military Institute of Telecommunications and Information Technologies named after Heroes of Kruty

Doctor of Technical Science, Senior Researcher, Head of Department

Department of Automated Control Systems

Serhii Korobchenko, Central Scientific Research Institute of Armaments and Military Equipment of the Armed Forces of Ukraine

PhD, Leading Researcher

Research Laboratory for Scientific and Methodological Support of Military-Technical Cooperation

Vitaliy Baginsky, Hetman Petro Sahaidachnyi National Army Academy

PhD, Associate Professor

Department of Tactical and Special Disciplines

Yurii Tsimura, Military Institute of Telecommunications and Information Technologies named after Heroes of Kruty

Lecturer

Department of Telecommunications Systems and Networks

Leonid Kolodiichuk, Military Institute of Telecommunications and Information Technologies named after Heroes of Kruty

Lecturer

Department of Telecommunications Systems and Networks

Pavlo Khomenko, Military Institute of Telecommunications and Information Technologies named after Heroes of Kruty

Lecturer

Department of Telecommunications Systems and Networks

Nataliia Garashchuk, Military Unit A1906

Head of Department

Department of Scientific and Organizational

Olena Orobinska, National Technical University “Kharkiv Polytechnic Institute”

PhD, Associate Professor

Department of Intelligent Computer Systems

Andrii Shyshatskyi, Central Scientific Research Institute of Armaments and Military Equipment of the Armed Forces of Ukraine

PhD, Senior Researcher

Research Department of Electronic Warfare Development

References

  1. Bashkyrov, O. M., Kostyna, O. M., Shyshatskyi, A. V. (2015). Rozvytok intehrovanykh system zviazku ta peredachi danykh dlia potreb Zbroinykh Syl. Ozbroiennia ta viiskova tekhnika, 1, 35–39. Available at: http://nbuv.gov.ua/UJRN/ovt_2015_1_7
  2. Dudnyk, V., Sinenko, Y., Matsyk, M., Demchenko, Y., Zhyvotovskyi, R., Repilo, I. et. al. (2020). Development of a method for training artificial neural networks for intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 3 (2 (105)), 37–47. doi: https://doi.org/10.15587/1729-4061.2020.203301
  3. Sova, O., Shyshatskyi, A., Salnikova, O., Zhuk, O., Trotsko, O., Hrokholskyi, Y. (2021). Development of a method for assessment and forecasting of the radio electronic environment. EUREKA: Physics and Engineering, 4, 30–40. doi: https://doi.org/10.21303/2461-4262.2021.001940
  4. Pievtsov, H., Turinskyi, O., Zhyvotovskyi, R., Sova, O., Zvieriev, O., Lanetskii, B., Shyshatskyi, A. (2020). Development of an advanced method of finding solutions for neuro-fuzzy expert systems of analysis of the radioelectronic situation. EUREKA: Physics and Engineering, 4, 78–89. doi: https://doi.org/10.21303/2461-4262.2020.001353
  5. Zuiev, P., Zhyvotovskyi, R., Zvieriev, O., Hatsenko, S., Kuprii, V., Nakonechnyi, O. et. al. (2020). Development of complex methodology of processing heterogeneous data in intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 4 (9 (106)), 14–23. doi: https://doi.org/10.15587/1729-4061.2020.208554
  6. Shyshatskyi, A., Zvieriev, O., Salnikova, O., Demchenko, Y., Trotsko, O., Neroznak, Y. (2020). Complex Methods of Processing Different Data in Intellectual Systems for Decision Support System. International Journal of Advanced Trends in Computer Science and Engineering, 9 (4), 5583–5590. doi: https://doi.org/10.30534/ijatcse/2020/206942020
  7. Yeromina, N., Kurban, V., Mykus, S., Peredrii, O., Voloshchenko, O. et. al. (2021). The Creation of the Database for Mobile Robots Navigation under the Conditions of Flexible Change of Flight Assignment. International Journal of Emerging Technology and Advanced Engineering, 11 (5), 37–44. doi: https://doi.org/10.46338/ijetae0521_05
  8. Rotshteyn, A. P. (1999). Intellektual'nye tekhnologii identifikatsii: nechyotkie mnozhestva, geneticheskie algoritmy, neyronnye seti. Vinnitsa: “UNIVERSUM”, 320. Available at: http://pdf.lib.vntu.edu.ua/books/2019/Rotshtejn_1999_320.pdf
  9. Alpeeva, E. A., Volkova, I. I. (2019). The use of fuzzy cognitive maps in the development of an experimental model of automation of production accounting of material flows. Russian Journal of Industrial Economics, 12 (1), 97–106. doi: https://doi.org/10.17073/2072-1633-2019-1-97-106
  10. Zagranovskaya, A. V., Eissner, Y. N. (2017). Simulation scenarios of the economic situation based on fuzzy cognitive maps. Modern economics: problems and solutions, 10 (94), 33‒47. doi: https://doi.org/10.17308/meps.2017.10/1754
  11. Simankov, V. S., Putyato, M. M. (2013). Issledovanie metodov kognitivnogo analiza. Perspektivy razvitiya informatsionnyh tekhnologiy, 13, 31‒35. Available at: https://elibrary.ru/item.asp?id=20892185
  12. Ko, Y.-C., Fujita, H. (2019). An evidential analytics for buried information in big data samples: Case study of semiconductor manufacturing. Information Sciences, 486, 190–203. doi: https://doi.org/10.1016/j.ins.2019.01.079
  13. Ramaji, I. J., Memari, A. M. (2018). Interpretation of structural analytical models from the coordination view in building information models. Automation in Construction, 90, 117–133. doi: https://doi.org/10.1016/j.autcon.2018.02.025
  14. Pérez-González, C. J., Colebrook, M., Roda-García, J. L., Rosa-Remedios, C. B. (2019). Developing a data analytics platform to support decision making in emergency and security management. Expert Systems with Applications, 120, 167–184. doi: https://doi.org/10.1016/j.eswa.2018.11.023
  15. Chen, H. (2018). Evaluation of Personalized Service Level for Library Information Management Based on Fuzzy Analytic Hierarchy Process. Procedia Computer Science, 131, 952–958. doi: https://doi.org/10.1016/j.procs.2018.04.233
  16. Chan, H. K., Sun, X., Chung, S.-H. (2019). When should fuzzy analytic hierarchy process be used instead of analytic hierarchy process? Decision Support Systems, 125, 113114. doi: https://doi.org/10.1016/j.dss.2019.113114
  17. Osman, A. M. S. (2019). A novel big data analytics framework for smart cities. Future Generation Computer Systems, 91, 620–633. doi: https://doi.org/10.1016/j.future.2018.06.046
  18. Gödri, I., Kardos, C., Pfeiffer, A., Váncza, J. (2019). Data analytics-based decision support workflow for high-mix low-volume production systems. CIRP Annals, 68 (1), 471–474. doi: https://doi.org/10.1016/j.cirp.2019.04.001
  19. Harding, J. L. (2013). Data quality in the integration and analysis of data from multiple sources: some research challenges. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-2/W1, 59–63. doi: https://doi.org/10.5194/isprsarchives-xl-2-w1-59-2013
  20. Kosko, B. (1986). Fuzzy cognitive maps. International Journal of Man-Machine Studies, 24 (1), 65–75. doi: https://doi.org/10.1016/s0020-7373(86)80040-2
  21. Gorelova, G. V. (2013). Cognitive approach to simulation of large systems. Izvestiya SFedU. Engineering Sciences, 3, 239–250. Available at: http://old.izv-tn.tti.sfedu.ru/wp-content/uploads/2013/3/32.pdf
  22. Koshlan, A., Salnikova, O., Chekhovska, M., Zhyvotovskyi, R., Prokopenko, Y., Hurskyi, T. et. al. (2019). Development of an algorithm for complex processing of geospatial data in the special-purpose geoinformation system in conditions of diversity and uncertainty of data. Eastern-European Journal of Enterprise Technologies, 5 (9 (101)), 35–45. doi: https://doi.org/10.15587/1729-4061.2019.180197
  23. Mahdi, Q. A., Shyshatskyi, A., Prokopenko, Y., Ivakhnenko, T., Kupriyenko, D., Golian, V. et. al. (2021). Development of estimation and forecasting method in intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 3 (9 (111)), 51–62. doi: https://doi.org/10.15587/1729-4061.2021.232718
  24. Emel'yanov, V. V., Kureychik, V. V., Kureychik, V. M., Emel'yanov, V. V. (2003). Teoriya i praktika evolyutsionnogo modelirovaniya. Moscow: Fizmatlit, 432.
  25. Gorokhovatsky, V., Stiahlyk, N., Tsarevska, V. (2021). Combination method of accelerated metric data search in image classification problems. Advanced Information Systems, 5 (3), 5–12. doi: https://doi.org/10.20998/2522-9052.2021.3.01
  26. Levashenko, V., Liashenko, O., Kuchuk, H. (2020). Building Decision Support Systems based on Fuzzy Data. Advanced Information Systems, 4 (4), 48–56. doi: https://doi.org/10.20998/2522-9052.2020.4.07
  27. Meleshko, Y., Drieiev, O., Drieieva, H. (2020). Method of identification bot profiles based on neural networks in recommendation systems. Advanced Information Systems, 4 (2), 24–28. doi: https://doi.org/10.20998/2522-9052.2020.2.05
  28. Kuchuk, N., Merlak, V., Skorodelov, V. (2020). A method of reducing access time to poorly structured data. Advanced Information Systems, 4 (1), 97–102. doi: https://doi.org/10.20998/2522-9052.2020.1.14
  29. Shyshatskyi, A., Tiurnikov, M., Suhak, S., Bondar, O., Melnyk, A., Bokhno, T., Lyashenko, A. (2020). Method of assessment of the efficiency of the communication of operational troop grouping system. Advanced Information Systems, 4 (1), 107–112. doi: https://doi.org/10.20998/2522-9052.2020.1.16

Downloads

Published

2021-12-29

How to Cite

Zhuravskyi, Y., Sova, O., Korobchenko, S., Baginsky, V., Tsimura, Y., Kolodiichuk, L., Khomenko, P., Garashchuk, N., Orobinska, O., & Shyshatskyi, A. . (2021). Development of object state evaluation method in intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 6(9 (114), 54–63. https://doi.org/10.15587/1729-4061.2021.246421

Issue

Section

Information and controlling system