Розробка методу оцінки стану об’єкту в інтелектуальних системах підтримки прийняття рішень

Автор(и)

  • Юрій Володимирович Журавський Житомирський військовий інститут імені С. П. Корольова, Україна https://orcid.org/0000-0002-4234-9732
  • Олег Ярославович Сова Військовий інститут телекомунікацій та інформатизації імені Героїв Крут, Україна https://orcid.org/0000-0002-7200-8955
  • Сергій Олегович Коробченко Центральний науково-дослідний інститут озброєння та військової техніки Збройних Сил України, Україна https://orcid.org/0000-0001-7650-5935
  • Віталій Анатолійович Багінський Національна академія Сухопутних військ імені гетьмана Петра Сагайдачного, Україна https://orcid.org/0000-0003-3557-1084
  • Юрій Васильович Цімура Військовий інститут телекомунікацій та інформатизації імені Героїв Крут, Україна https://orcid.org/0000-0002-6269-3821
  • Леонід Вікторович Колодійчук Військовий інститут телекомунікацій та інформатизації імені Героїв Крут, Україна https://orcid.org/0000-0002-8514-0541
  • Павло Володимирович Хоменко Військовий інститут телекомунікацій та інформатизації імені Героїв Крут, Україна https://orcid.org/0000-0002-8543-1971
  • Наталія Петрівна Гаращук Військова частина А1906, Україна https://orcid.org/0000-0002-4868-1912
  • Олена Олександрівна Оробінська Національний технічний університет “Харківський політехнічний інститут”, Україна https://orcid.org/0000-0002-8386-8053
  • Андрій Володимирович Шишацький Центральний науково-дослідний інститут озброєння та військової техніки Збройних Сил України, Україна https://orcid.org/0000-0001-6731-6390

DOI:

https://doi.org/10.15587/1729-4061.2021.246421

Ключові слова:

система підтримки прийняття рішень, штучні нейронні мережі, генетичний алгоритм, популяція

Анотація

Точний та об’єктивний аналіз об’єкту вимагає багатопараметричної оцінки зі значними обчислювальними витратами. Запропоновано методичний підхід для підвищення точності оцінювання стану об’єкту моніторингу. Зазначений методичний підхід заснований на поєднанні нечітких когнітивних моделей, удосконаленого генетичного алгоритму та штучних нейронних мереж, що еволюціонують. Методичний підхід має наступну послідовність дій: побудова нечіткої когнітивної моделі; корегування нечіткої когнітивної моделі та навчання баз знань. Відмінні риси методичного підходу полягають в тому, що на при побудові стану об’єкту моніторингу за допомогою нечітких когнітивних моделей враховується тип невизначеності та зашумленості даних. При корегуванні нечітких когнітивних моделей за допомогою генетичного алгоритму новизною є: врахування типу невизначеності даних; врахування пристосованості особин на ітерації; тривалості існування особин та топології нечіткої когнітивної моделі. Удосконалений генетичний алгоритм підвищує оперативність корегування факторів та зв’язків між ними в нечіткій когнітивній моделі. Це досягається за рахунок пошуку рішення в різних напрямках декількома особинами зі складу популяції. Процедура навчання полягає в тому, що відбувається навчання синаптичних ваг штучної нейронної мережі, типу та параметрів функції належності, а також архітектури окремих елементів і архітектури штучної нейронної мережі в цілому. Використання методу дозволяє досягти підвищення оперативності обробки даних на рівні 16–24 % за рахунок використання додаткових удосконалених процедур. Запропонований методичний підхід доцільно використовувати для вирішення задач оцінки складних та динамічних процесів, що характеризуються високим ступенем складності

Спонсор дослідження

  • Авторський колектив висловлює подяку за надання допомоги в підготовці статті: – доктору технічних наук, професору Кувшинову Олексію Вікторовичу – заступнику начальника навчально-наукового інституту Національного університету оборони України імені Івана Черняховського; – доктору технічних наук, професору Ротштейну Олександру Петровичу –професору Ієрусалимського політехнічного інституту Махон Лев; – кандидату технічних наук, доценту Башкирову Олександру Миколайовичу – провідному науковому співробітнику Центрального науково-дослідного інституту озброєння та військової техніки Збройних Сил України.

Біографії авторів

Юрій Володимирович Журавський, Житомирський військовий інститут імені С. П. Корольова

Доктор технічних наук, старший науковий співробітник, начальник кафедри

Кафедра електротехніки та електроніки

Олег Ярославович Сова, Військовий інститут телекомунікацій та інформатизації імені Героїв Крут

Доктор технічних наук, старший науковий співробітник, начальник кафедри

Кафедра автоматизованих систем управління

Сергій Олегович Коробченко, Центральний науково-дослідний інститут озброєння та військової техніки Збройних Сил України

Кандидат технічних наук, провідний науковий співробітник

Науково-дослідна лабораторія науково-методичного забезпечення військово-технічного співробітництва

Віталій Анатолійович Багінський, Національна академія Сухопутних військ імені гетьмана Петра Сагайдачного

Кандидат технічних наук, доцент

Кафедра тактико-спеціальних дисциплін

Юрій Васильович Цімура, Військовий інститут телекомунікацій та інформатизації імені Героїв Крут

Викладач

Кафедра телекомунікаційних систем та мереж

Леонід Вікторович Колодійчук, Військовий інститут телекомунікацій та інформатизації імені Героїв Крут

Викладач

Кафедра телекомунікаційних систем та мереж

Павло Володимирович Хоменко, Військовий інститут телекомунікацій та інформатизації імені Героїв Крут

Викладач

Кафедра телекомунікаційних систем та мереж

Наталія Петрівна Гаращук, Військова частина А1906

Начальник відділу

Науково-організаційний відділ

Олена Олександрівна Оробінська, Національний технічний університет “Харківський політехнічний інститут”

Кандидат технічних наук, доцент

Кафедра інтелектуальних комп’ютерних систем

Андрій Володимирович Шишацький, Центральний науково-дослідний інститут озброєння та військової техніки Збройних Сил України

Кандидат технічних наук, старший науковий співробітник

Науково-дослідний відділ розвитку засобів радіоелектронної боротьби

Посилання

  1. Bashkyrov, O. M., Kostyna, O. M., Shyshatskyi, A. V. (2015). Rozvytok intehrovanykh system zviazku ta peredachi danykh dlia potreb Zbroinykh Syl. Ozbroiennia ta viiskova tekhnika, 1, 35–39. Available at: http://nbuv.gov.ua/UJRN/ovt_2015_1_7
  2. Dudnyk, V., Sinenko, Y., Matsyk, M., Demchenko, Y., Zhyvotovskyi, R., Repilo, I. et. al. (2020). Development of a method for training artificial neural networks for intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 3 (2 (105)), 37–47. doi: https://doi.org/10.15587/1729-4061.2020.203301
  3. Sova, O., Shyshatskyi, A., Salnikova, O., Zhuk, O., Trotsko, O., Hrokholskyi, Y. (2021). Development of a method for assessment and forecasting of the radio electronic environment. EUREKA: Physics and Engineering, 4, 30–40. doi: https://doi.org/10.21303/2461-4262.2021.001940
  4. Pievtsov, H., Turinskyi, O., Zhyvotovskyi, R., Sova, O., Zvieriev, O., Lanetskii, B., Shyshatskyi, A. (2020). Development of an advanced method of finding solutions for neuro-fuzzy expert systems of analysis of the radioelectronic situation. EUREKA: Physics and Engineering, 4, 78–89. doi: https://doi.org/10.21303/2461-4262.2020.001353
  5. Zuiev, P., Zhyvotovskyi, R., Zvieriev, O., Hatsenko, S., Kuprii, V., Nakonechnyi, O. et. al. (2020). Development of complex methodology of processing heterogeneous data in intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 4 (9 (106)), 14–23. doi: https://doi.org/10.15587/1729-4061.2020.208554
  6. Shyshatskyi, A., Zvieriev, O., Salnikova, O., Demchenko, Y., Trotsko, O., Neroznak, Y. (2020). Complex Methods of Processing Different Data in Intellectual Systems for Decision Support System. International Journal of Advanced Trends in Computer Science and Engineering, 9 (4), 5583–5590. doi: https://doi.org/10.30534/ijatcse/2020/206942020
  7. Yeromina, N., Kurban, V., Mykus, S., Peredrii, O., Voloshchenko, O. et. al. (2021). The Creation of the Database for Mobile Robots Navigation under the Conditions of Flexible Change of Flight Assignment. International Journal of Emerging Technology and Advanced Engineering, 11 (5), 37–44. doi: https://doi.org/10.46338/ijetae0521_05
  8. Rotshteyn, A. P. (1999). Intellektual'nye tekhnologii identifikatsii: nechyotkie mnozhestva, geneticheskie algoritmy, neyronnye seti. Vinnitsa: “UNIVERSUM”, 320. Available at: http://pdf.lib.vntu.edu.ua/books/2019/Rotshtejn_1999_320.pdf
  9. Alpeeva, E. A., Volkova, I. I. (2019). The use of fuzzy cognitive maps in the development of an experimental model of automation of production accounting of material flows. Russian Journal of Industrial Economics, 12 (1), 97–106. doi: https://doi.org/10.17073/2072-1633-2019-1-97-106
  10. Zagranovskaya, A. V., Eissner, Y. N. (2017). Simulation scenarios of the economic situation based on fuzzy cognitive maps. Modern economics: problems and solutions, 10 (94), 33‒47. doi: https://doi.org/10.17308/meps.2017.10/1754
  11. Simankov, V. S., Putyato, M. M. (2013). Issledovanie metodov kognitivnogo analiza. Perspektivy razvitiya informatsionnyh tekhnologiy, 13, 31‒35. Available at: https://elibrary.ru/item.asp?id=20892185
  12. Ko, Y.-C., Fujita, H. (2019). An evidential analytics for buried information in big data samples: Case study of semiconductor manufacturing. Information Sciences, 486, 190–203. doi: https://doi.org/10.1016/j.ins.2019.01.079
  13. Ramaji, I. J., Memari, A. M. (2018). Interpretation of structural analytical models from the coordination view in building information models. Automation in Construction, 90, 117–133. doi: https://doi.org/10.1016/j.autcon.2018.02.025
  14. Pérez-González, C. J., Colebrook, M., Roda-García, J. L., Rosa-Remedios, C. B. (2019). Developing a data analytics platform to support decision making in emergency and security management. Expert Systems with Applications, 120, 167–184. doi: https://doi.org/10.1016/j.eswa.2018.11.023
  15. Chen, H. (2018). Evaluation of Personalized Service Level for Library Information Management Based on Fuzzy Analytic Hierarchy Process. Procedia Computer Science, 131, 952–958. doi: https://doi.org/10.1016/j.procs.2018.04.233
  16. Chan, H. K., Sun, X., Chung, S.-H. (2019). When should fuzzy analytic hierarchy process be used instead of analytic hierarchy process? Decision Support Systems, 125, 113114. doi: https://doi.org/10.1016/j.dss.2019.113114
  17. Osman, A. M. S. (2019). A novel big data analytics framework for smart cities. Future Generation Computer Systems, 91, 620–633. doi: https://doi.org/10.1016/j.future.2018.06.046
  18. Gödri, I., Kardos, C., Pfeiffer, A., Váncza, J. (2019). Data analytics-based decision support workflow for high-mix low-volume production systems. CIRP Annals, 68 (1), 471–474. doi: https://doi.org/10.1016/j.cirp.2019.04.001
  19. Harding, J. L. (2013). Data quality in the integration and analysis of data from multiple sources: some research challenges. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-2/W1, 59–63. doi: https://doi.org/10.5194/isprsarchives-xl-2-w1-59-2013
  20. Kosko, B. (1986). Fuzzy cognitive maps. International Journal of Man-Machine Studies, 24 (1), 65–75. doi: https://doi.org/10.1016/s0020-7373(86)80040-2
  21. Gorelova, G. V. (2013). Cognitive approach to simulation of large systems. Izvestiya SFedU. Engineering Sciences, 3, 239–250. Available at: http://old.izv-tn.tti.sfedu.ru/wp-content/uploads/2013/3/32.pdf
  22. Koshlan, A., Salnikova, O., Chekhovska, M., Zhyvotovskyi, R., Prokopenko, Y., Hurskyi, T. et. al. (2019). Development of an algorithm for complex processing of geospatial data in the special-purpose geoinformation system in conditions of diversity and uncertainty of data. Eastern-European Journal of Enterprise Technologies, 5 (9 (101)), 35–45. doi: https://doi.org/10.15587/1729-4061.2019.180197
  23. Mahdi, Q. A., Shyshatskyi, A., Prokopenko, Y., Ivakhnenko, T., Kupriyenko, D., Golian, V. et. al. (2021). Development of estimation and forecasting method in intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 3 (9 (111)), 51–62. doi: https://doi.org/10.15587/1729-4061.2021.232718
  24. Emel'yanov, V. V., Kureychik, V. V., Kureychik, V. M., Emel'yanov, V. V. (2003). Teoriya i praktika evolyutsionnogo modelirovaniya. Moscow: Fizmatlit, 432.
  25. Gorokhovatsky, V., Stiahlyk, N., Tsarevska, V. (2021). Combination method of accelerated metric data search in image classification problems. Advanced Information Systems, 5 (3), 5–12. doi: https://doi.org/10.20998/2522-9052.2021.3.01
  26. Levashenko, V., Liashenko, O., Kuchuk, H. (2020). Building Decision Support Systems based on Fuzzy Data. Advanced Information Systems, 4 (4), 48–56. doi: https://doi.org/10.20998/2522-9052.2020.4.07
  27. Meleshko, Y., Drieiev, O., Drieieva, H. (2020). Method of identification bot profiles based on neural networks in recommendation systems. Advanced Information Systems, 4 (2), 24–28. doi: https://doi.org/10.20998/2522-9052.2020.2.05
  28. Kuchuk, N., Merlak, V., Skorodelov, V. (2020). A method of reducing access time to poorly structured data. Advanced Information Systems, 4 (1), 97–102. doi: https://doi.org/10.20998/2522-9052.2020.1.14
  29. Shyshatskyi, A., Tiurnikov, M., Suhak, S., Bondar, O., Melnyk, A., Bokhno, T., Lyashenko, A. (2020). Method of assessment of the efficiency of the communication of operational troop grouping system. Advanced Information Systems, 4 (1), 107–112. doi: https://doi.org/10.20998/2522-9052.2020.1.16

##submission.downloads##

Опубліковано

2021-12-29

Як цитувати

Журавський, Ю. В., Сова, О. Я., Коробченко, С. О., Багінський, В. А., Цімура, Ю. В., Колодійчук, Л. В., Хоменко, П. В., Гаращук, Н. П., Оробінська, О. О., & Шишацький, А. В. (2021). Розробка методу оцінки стану об’єкту в інтелектуальних системах підтримки прийняття рішень. Eastern-European Journal of Enterprise Technologies, 6(9 (114), 54–63. https://doi.org/10.15587/1729-4061.2021.246421

Номер

Розділ

Інформаційно-керуючі системи