Confidence interval of nonlinear regression of restoration time of network terminal devices

Authors

  • Сергей Борисович Приходько National University of Shipbuilding named after admiral Makarov Geroev Stalingrada, 9, Mykolaiv, Ukraine, 54025, Ukraine https://orcid.org/0000-0002-2325-018X
  • Лидия Николаевна Макарова National University of Shipbuilding named after admiral Makarov Geroev Stalingrada, 9, Mykolaiv, Ukraine, 54025, Ukraine https://orcid.org/0000-0003-2903-3001

DOI:

https://doi.org/10.15587/1729-4061.2014.24663

Keywords:

confidence interval, nonlinear regression, normalizing transformation, Johnson transformation, terminal network

Abstract

Building confidence interval of the nonlinear regression equation and estimating the restoration time of devices play an important role in the practical tasks of terminal network control. Restoration time is non-Gaussian random variable, which depends on the distance between the service center and the terminal network device. For more reliable estimation of restoration time, it is necessary to have the confidence interval of its non-linear regression.

In the case of Gaussian random variable, it is possible to apply linear regression equation and build the confidence interval for it by traditional method using the Student's t-distribution. This method does not take into account many features of the empirical data distribution, for example, its asymmetry. In the case of non-Gaussian random variable, it is difficult to build the confidence interval of the nonlinear regression equation without the assumption of normality.

Applying linearizing transformations is reduced to obtaining a linear regression model from the original non-linear by replacing variables and coefficients. This substitution leads to the model simplification and data loss, associated with nonlinearity.

Using the normalizing transformations allows to proceed to linear regression of the normalized data, build the confidence interval for it by the traditional method, and finally, by applying the relevant transformation, pass to non-linear regression and its confidence interval. Johnson transformation is used as normalizing transformation because it provides the best results as compared to other known transformations.

Author Biographies

Сергей Борисович Приходько, National University of Shipbuilding named after admiral Makarov Geroev Stalingrada, 9, Mykolaiv, Ukraine, 54025

Dr.S., lecturer

Department of automated systems software

Лидия Николаевна Макарова, National University of Shipbuilding named after admiral Makarov Geroev Stalingrada, 9, Mykolaiv, Ukraine, 54025

Applicant

Department of automated systems software

References

  1. Наша цель – банк в шаговой доступности [Электронный ресурс] / Режим доступа: http://www.inpas.ru/publications/78/. – Загл. с экрана.
  2. Грешилов, А. А. Математические методы построения прогнозов [Текст] / А. А. Грешилов, В. А. Стакун, А. А. Стакун. – М.: Радио и связь, 1997. – 112 с.
  3. Демиденко, Е. З. Линейная и нелинейная регрессии [Текст] / Е. З. Демиденко. – М.: Финансы и статистика, 1981. – 302 с.
  4. Bates, Douglas M. Nonlinear Regression Analysis and Its Applications [Text] / Douglas M. Bates, Donald G. Watts. – Wiley, 1988. – 384 p.
  5. Pardoe, Iain Applied regression modeling [Text] / Iain Pardoe. – Wiley, 2012. – 325 p.
  6. Seber, George A. F. Nonlinear Regression [Text] / George A. F. Seber, C. J. Wild. – John Wiley & Sons, Inc., 2003. – 792 p.
  7. Yan, Xin Linear regression analysis: theory and computing [Text] / Xin Yan, Xiao Gang Su. – Singapore: World Scientific Publishing Co. Pte. Ltd., 2009. – 328 p.
  8. Айвазян, С. А. Прикладная статистика. Основы эконометрики: Учебник для вузов [Текст]: В 2 т. 2-е изд., испр. – Т. 1: Теория вероятностей и прикладная статистика / С. А. Айвазян, В. С. Мхитарян. – М.: ЮНИТИ-ДАНА, 2001. – 656 с.
  9. Кобзарь, А. И. Прикладная математическая статистика. Для инженеров и научных работников [Текст] / А. И. Кобзарь. – М.: ФИЗМАТЛИТ, 2006. – 816 с.
  10. Chatterjee, Samprit Handbook of Regression Analysis [Text] / Samprit Chatterjee, Jeffrey S. Simonoff. – Wiley, 2012. – 240 p.
  11. Приходько, С. Б. Інтервальне оцінювання статистичних моментів негаусівських випадкових величин на основі нормалізуючих перетворень [Текст] / С. Б. Приходько // Математичне моделювання: науковий журнал. – Дніпродзержинськ: ДДТУ. – 2011. – № 1 (24). – С. 9–13.
  12. Приходько, С. Б. Метод побудови нелінійних рівнянь регресії на основі нормалізуючих перетворень [Текст] : тези доп. міждерж. наук.-методич. конф. / С. Б. Приходько // Проблеми математичного моделювання. – Дніпродзержинськ: ДДТУ, 2012. – С. 31–33.
  13. Ryan, Thomas P. Modern Regression Methods [Text] / Thomas P. Ryan – Wiley, 2008. – 672 p.
  14. Приходько, С. Б. Розробка нелінійної регресійної моделі тривалості програмних проектів на основі нормалізуючого перетворення Джонсона [Текст] / С. Б. Приходько, А. В. Пухалевич // Радіоелектронні і комп`ютерні системи. – – 2012. – № 4 (56). – С. 90–93.
  15. Приходько, С. Б. Определение доверительных интервалов статистических моментов времени наработки между отказами устройств терминальной сети [Текст] / С. Б. Приходько, Л. Н. Макарова // Наукові праці: науково-методичний журнал. Комп`ютерні технології. – 2013. – Вип. 201, Т. 213. – С. 82–86.
  16. Кендалл, М. Теория распределений [Текст] / М. Кендалл, А. Стьюарт. – М.: Наука, 1966. – 588 с.
  17. Johnson, N. L. System of Frequency Curves Generated by Methods of Translation [Text] / N. L. Johnson // Biometrica. – 1949. – Vol. 36, № ½. – P. 149–176.
  18. Вентцель, Е. С. Теория вероятностей: Учеб. для вузов [Текст] / Е. С. Вентцель. – М.: Высш. шк., 1999. – 576 c.
  19. Магнус, Я. Р. Эконометрика. Начальный курс: Учеб. – 6-е изд., перераб. и доп. [Текст] / Я. Р. Магнус, П. К. Катышев, А. А. Пересецкий. – М.: Дело, 2004. – 576 с.
  20. Поллард, Дж. Справочник по вычислительным методам статистики [Текст] / Дж. Поллард; пер. с англ. В. С. Занадворова; под ред. и с предисл. Е. М. Четыркина. – М.: Финансы и статистика, 1982. – 344 с.
  21. Nasha cel' – bank v shagovoj dostupnosti. Available at: http://www.inpas.ru/publications/78/.
  22. Greshilov, A. A., Stakun, V. A., Stakun, A. A. (1997). Matematicheskie metody postroenija prognozov. Radio i svjaz', 112.
  23. Demidenko, E. Z. (1981). Linejnaja i nelinejnaja regressii. Finansy i statistika, 302.
  24. Bates, Douglas M., Donald, G. Watts (1988). Nonlinear Regression Analysis and Its Applications. Wiley, 384.
  25. Pardoe, Iain (2012). Applied regression modeling. Wiley, 325.
  26. Seber, George A. F., Wild, C. J. (2003). Nonlinear Regression. John Wiley & Sons, Inc., 792.
  27. Yan, Xin, Xiao, Gang Su (2009). Linear regression analysis: theory and computing. Singapore: World Scientific Publishing Co. Pte. Ltd., 328.
  28. Ajvazjan, S. A., Mhitarjan, V. S. (2001). Prikladnaja statistika. Osnovy jekonometriki: Uchebnik dlja vuzov. Vol. 1: Teorija verojatnostej i prikladnaja statistika. JuNITI-DANA, 656.
  29. Kobzar', A. I. (2006). Prikladnaja matematicheskaja statistika. Dlja inzhenerov i nauchnyh rabotnikov. FIZMATLIT, 816.
  30. Chatterjee, Samprit, Simonoff, Jeffrey S. (2012). Handbook of Regression Analysis. Wiley, 240.
  31. Prihod'ko, S. B (2011). Іnterval'ne ocіnjuvannja statistichnih momentіv negausіvs'kih vipadkovih velichin na osnovі normalіzujuchih peretvoren'. Matematichne modeljuvannja:
  32. naukovij zhurnal. Dnіprodzerzhins'k: DDTU, 1 (24), 9–13.
  33. Prihod'ko, S. B. (2012). Metod pobudovi nelіnіjnih rіvnjan' regresії na osnovі normalіzujuchih peretvoren'. Problemi matematichnogo modeljuvannja. – Dnіprodzerzhins'k: DDTU, 31–33.
  34. Ryan, Thomas P. (2008). Modern Regression Methods. Wiley, 672.
  35. Prihod'ko, S. B., Puhalevich, A. V. (2012). Rozrobka nelіnіjnoї regresіjnoї modelі trivalostі programnih proektіv na osnovі normalіzujuchogo peretvorennja Dzhonsona. Radіoelektronnі і komp`juternі sistemi. Harkіv: "HAІ", 4 (56), 90–93.
  36. Prihod'ko, S. B., Makarova, L. N. (2013). Opredelenie doveritel'nyh intervalov statisticheskih momentov vremeni narabotki mezhdu otkazami ustrojstv terminal'noj seti. Naukovі pracі: naukovo-metodichnij zhurnal. Komp`juternі tehnologіi, Issue 201, Vol. 213, 82–86.
  37. Kendall, M., St'juart, A. (1966). Teorija raspredelenij. Nauka, 588.
  38. Johnson, N. L. (1949). System of Frequency Curves Generated by Methods of Translation. Biometrica, Vol. 36, № ½, 149–176.
  39. Ventcel', E. S. (1999). Teorija verojatnostej: Ucheb. dlja vuzov. Vyssh. shk., 576.
  40. Magnus, Ja. R., Katyshev, P. K., Pereseckij, A. A. (2004). Jekonometrika. Nachal'nyj kurs: Ucheb. 6-e izd., pererab. i dop. Delo, 576.
  41. Pollard, Dzh. (1982). Spravochnik po vychislitel'nym metodam statistiki. Finansy i statistika, 344.

Published

2014-06-20

How to Cite

Приходько, С. Б., & Макарова, Л. Н. (2014). Confidence interval of nonlinear regression of restoration time of network terminal devices. Eastern-European Journal of Enterprise Technologies, 3(4(69), 26–31. https://doi.org/10.15587/1729-4061.2014.24663

Issue

Section

Mathematics and Cybernetics - applied aspects