Procedure for selecting optimal geometric parameters of the rotor for a traction non-partitioned permanent magnet-assisted synchronous reluctance motor

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.247208

Keywords:

synchronous reluctance motor, Nelder-Mead method, finite-element method, non-partitioned permanent magnets

Abstract

This paper reports the construction of a mathematical model for determining the electromagnetic momentum of a synchronous reluctance motor with non-partitioned permanent magnets. Underlying it is the calculation of the engine magnetic field using the finite-element method in the flat-parallel problem statement. The model has been implemented in the FEMM finite-element analysis environment. The model makes it possible to determine the engine's electromagnetic momentum for various rotor geometries. The problem of conditional optimization of the synchronous reluctance motor rotor was stated on the basis of the rotor geometric criteria. As an analysis problem, it is proposed to use a mathematical model of the engine's magnetic field. Constraints for geometric and strength indicators have been defined. The Nelder-Mead method was chosen as the optimization technique. The synthesis of geometrical parameters of the synchronous reluctance motor rotor with non-partitioned permanent magnets has been proposed on the basis of solving the problem of conditional optimization. The restrictions that are imposed on optimization parameters have been defined. Based on the study results, the dependence of limiting the angle of rotation of the magnet was established on the basis of strength calculations. According to the calculation results based on the proposed procedure, it is determined that the optimal distance from the interpole axis and the angle of rotation of magnets is at a limit established by the strength of the rotor structure.

Based on the calculations, the value of the objective function decreased by 24.4 % (from −847 Nm to −1054 Nm), which makes it possible to significantly increase the electromagnetic momentum only with the help of the optimal arrangement of magnets on the engine rotor.

The results of solving the problem of synthesizing the rotor parameters for a trolleybus traction motor helped determine the optimal geometrical parameters for arranging permanent magnets.

Author Biographies

Borys Liubarskyi, National Technical University «Kharkiv Polytechnic Institute»

Doctor of Technical Sciences, Professor

Department of Electrical Transport and Diesel Locomotive

Dmytro Iakunin, National Technical University «Kharkiv Polytechnic Institute»

PhD, Associate Professor

Department of Electrical Transport and Diesel Locomotive

Oleh Nikonov, Kharkiv National Automobile and Highway University

Doctor of Technical Sciences, Professor

Department of Computer Technologies and Mechatronics

Dmytro Liubarskyi, Kharkiv National Automobile and Highway University

Department of Computer Technologies and Mechatronics

Vladyslav Vasenko, O.M. Beketov National University of Urban Economy in Kharkiv

Postgraduate Student

Department of Electric Transport

Magomedemin Gasanov, National Technical University «Kharkiv Polytechnic Institute»

Doctor of Technical Sciences, Professor, Vice-Rector for Scientific and Pedagogical Work

References

  1. Luvishis, A. L. (2017). Asinhronniy tyagoviy privod: nachalo puti. Lokomotiv, 1 (721), 44–46.
  2. Goolak, S., Gerlici, J., Tkachenko, V., Sapronova, S., Lack, T., Kravchenko, K. (2019). Determination of Parameters of Asynchronous Electric Machines with Asymmetrical Windings of Electric Locomotives. Communications - Scientific Letters of the University of Zilina, 21 (2), 24–31. doi: https://doi.org/10.26552/com.c.2019.2.24-31
  3. Liubarskyi, B., Demydov, A., Yeritsyan, B., Nuriiev, R., Iakunin, D. (2018). Determining electrical losses of the traction drive of electric train based on a synchronous motor with excitation from permanent magnets. Eastern-European Journal of Enterprise Technologies, 2 (9 (92)), 29–39. doi: https://doi.org/10.15587/1729-4061.2018.127936
  4. Basov, H. H., Yatsko, S. I. (2005). Rozvytok elektrychnoho motorvahonnoho rukhomoho skladu. Ch. 2. Kharkiv: «Apeks+», 248.
  5. Bezruchenko, V. M., Varchenko, V. K., Chumak, V. V. (2003). Tiahovi elektrychni mashyny elektrorukhomoho skladu. Dnipropetrovsk: DNUZT, 252.
  6. Liubarskyi, B., Riabov, I., Iakunin, D., Dubinina, O., Nikonov, O., Domansky, V. (2021). Determining the effect of stator groove geometry in a traction synchronous reluctance motor with permanent magnets on the saw-shaped electromagnetic moment level. Eastern-European Journal of Enterprise Technologies, 3 (8 (111)), 68–74. doi: https://doi.org/10.15587/1729-4061.2021.233270
  7. Liubarskyi, B. G., Overianova, L. V., Riabov, I. S., Iakunin, D. I., Ostroverkh, O. O., Voronin, Y. V. (2021). Estimation of the main dimensions of the traction permanent magnet-assisted synchronous reluctance motor. Electrical Engineering & Electromechanics, 2, 3–8. doi: https://doi.org/10.20998/2074-272x.2021.2.01
  8. Stipetic, S., Zarko, D., Kovacic, M. (2016). Optimised design of permanent magnet assisted synchronous reluctance motor series using combined analytical–finite element analysis based approach. IET Electric Power Applications, 10 (5), 330–338. doi: https://doi.org/10.1049/iet-epa.2015.0245
  9. Viego-Felipe, P. R., Gómez-Sarduy, J. R., Sousa-Santos, V., Quispe-Oqueña, E. C. (2018). Motores sincrónicos de reluctancia asistidos por iman permanente: Un nuevo avance en el desarrollo de los motores eléctricos. Ingeniería, Investigación y Tecnología, 19 (3), 269–279. doi: https://doi.org/10.22201/fi.25940732e.2018.19n3.023
  10. Moghaddam, R. R. (2011). Synchronous Reluctance Machine (SynRM) in Variable Speed Drives (VSD) Applications – Theoretical and Experimental Reevaluation. Stockholm, 260. Available at: https://www.diva-portal.org/smash/get/diva2:417890/FULLTEXT01.pdf
  11. Wu, W., Zhu, X., Quan, L., Du, Y., Xiang, Z., Zhu, X. (2018). Design and Analysis of a Hybrid Permanent Magnet Assisted Synchronous Reluctance Motor Considering Magnetic Saliency and PM Usage. IEEE Transactions on Applied Superconductivity, 28 (3), 1–6. doi: https://doi.org/10.1109/tasc.2017.2775584
  12. Yoshida, K. (2002). Development of Main Circuit System using Direct Drive Motor (DDM). Special edition paper. JR EAST Technical Review, 1, 046–052. Available at: https://www.jreast.co.jp/e/development/tech/pdf_1/46_52tecrev.pdf
  13. Vaskovskyi, Yu. M., Haidenko, Yu. A., Rusiatynskyi, A. E. (2013). Mathematical modeling and selecting of construction parameters for traction synchronous motors with permanent magnets. Tekhnichna elektrodynamika, 6, 40–45. Available at: http://dspace.nbuv.gov.ua/bitstream/handle/123456789/100755/09-Vaskovsky.pdf?sequence=1
  14. Dehghani Ashkezari, J., Khajeroshanaee, H., Niasati, M., Jafar Mojibian, M. (2017). Optimum design and operation analysis of permanent magnet-assisted synchronous reluctance motor. Turkish Journal of Electrical Engineering & Computer Sciences, 25, 1894–1907. doi: https://doi.org/10.3906/elk-1603-170
  15. Mohd Jamil, M. L., Zolkapli, Z. Z., Jidin, A., Raja Othman, R. N. F., Sutikno, T. (2015). Electromagnetic Performance due to Tooth-tip Design in Fractional-slot PM Brushless Machines. International Journal of Power Electronics and Drive Systems (IJPEDS), 6 (4), 860. doi: https://doi.org/10.11591/ijpeds.v6.i4.pp860-868
  16. Uspensky, B., Avramov, K., Liubarskyi, B., Andrieiev, Y., Nikonov, O. (2019). Nonlinear torsional vibrations of electromechanical coupling of diesel engine gear system and electric generator. Journal of Sound and Vibration, 460, 114877. doi: https://doi.org/10.1016/j.jsv.2019.114877
  17. Meeker, D. (2015). Finite Element Method Magnetics. Version 4.2. User’s Manual. Available at: http://www.femm.info/Archives/doc/manual42.pdf
  18. Severin, V. P. (2005). Vector optimization of the integral quadratic estimates for automatic control systems. Journal of Computer and Systems Sciences International, 44 (2), 207–216.
  19. Nikulina, E. N., Severyn, V. P., Kotsiuba, N. V. (2018). Optimization of direct quality indexes of automatic control systems of steam generator productivity. Bulletin of National Technical University “KhPI”. Series: System Analysis, Control and Information Technologies, 21, 8–13. doi: https://doi.org/10.20998/2079-0023.2018.21.02
  20. Kononenko, K. E., Kononenko, A. V., Krutskih, S. V. (2015). Parametricheskaya optimizatsiya geometrii pazov rotora kak sposob povysheniya KPD asinhronnogo dvigatelya s korotkozamknutym rotorom. Elektrotekhnicheskie kompleksy i sistemy upravleniya, 2, 45–49. Available at: https://elibrary.ru/item.asp?id=24252080
  21. Liubarskyi, B., Lukashova, N., Petrenko, O., Pavlenko, T., Iakunin, D., Yatsko, S., Vashchenko, Y. (2019). Devising a procedure to choose optimal parameters for the electromechanical shock absorber for a subway car. Eastern-European Journal of Enterprise Technologies, 4 (5 (100)), 16–25. doi: https://doi.org/10.15587/1729-4061.2019.176304

Downloads

Published

2021-12-24

How to Cite

Liubarskyi, B., Iakunin, D., Nikonov, O., Liubarskyi, D., Vasenko, V., & Gasanov, M. (2021). Procedure for selecting optimal geometric parameters of the rotor for a traction non-partitioned permanent magnet-assisted synchronous reluctance motor . Eastern-European Journal of Enterprise Technologies, 6(8 (114), 27–33. https://doi.org/10.15587/1729-4061.2021.247208

Issue

Section

Energy-saving technologies and equipment